brian2modelfitting
Release 0.4+git

Jun 21, 2023

Contents

1 Model fitting

2 Contents
2.1 Model Fitting o e e e e
2.2 OPUMIZET . .« v v v o et e
2.3 0 MELITIC . . o e e e e e e e e e e e e e e
2.4 Inferencer. e e e e e e e e e e e e
2.5 Advanced Features e e e e e
2.6 Exampleso e e

3 API reference
3.1 brian2modelfitting package

4 Indices and tables
Bibliography
Python Module Index

Index

91

93

95

97

brian2modelfitting, Release 0.4+git

The package brianZmodel fitting is atool for parameter identification of neuron models defined in the Brian 2
simulator.

Please report bugs at the GitHub issue tracker or at the Brian 2 discussion forum. The latter is also a place to discuss
feature requests or potential contributions.

Contents 1

https://brian2.readthedocs.org
https://brian2.readthedocs.org
https://github.com/brian-team/brian2modelfitting/issues
https://groups.google.com/forum/#!forum/briansupport

brian2modelfitting, Release 0.4+git

2 Contents

CHAPTER 1

Model fitting

This toolbox allows the user to find the best fit of the unknown free parameters for recorded traces and spike trains. It
also supports simulation-based inference, where instead of point-estimated parameter values, a full posterior distribu-
tion over the parameters is computed.

By default, the toolbox supports a range of global derivative-free optimization methods, that include popular methods
for model fitting: differential evolution, particle swarm optimization and covariance matrix adaptation (provided by
the nevergrad, a gradient-free optimization platform) as well as Bayesian optimization for black box functions
(provided by scikit-optimize, a sequential model-based optimization library). On the other hand, simulation-
based inference is the process of finding parameters of a simulator from observations by taking a Bayesian approach,
in our case, via sequential neural posterior estimation, likelihood estimation or ratio estimation (provided by the
sbi), where neural densitiy estimator, a deep neural network allowing probabilistic association between the data
and underlying parameter space, is trained. After the network is trained, the approximated posterior distribution is
available.

Just like Brian 2 simulator itself, the brianZmodelfitting toolbox is designed to be easy to use and to save time
through automatic parallelization of the simulations using code generation.

brian2modelfitting, Release 0.4+git

4 Chapter 1. Model fitting

CHAPTER 2

Contents

2.1 Model Fitting

2.1.1 Introduction

The brian2modelfitting toolbox provides three optimization classes:
e TraceFitter
e SpikeFitter
® OnlineTraceFitter
and a simulation-based inference class:
e Inferencer

All classes expect a model and the data as an input and return either the best fit of each parameter with the correspond-
ing error, or a posterior distribution over unknown parameters. The toolbox can optimize over multiple traces (e.g.
input currents) at the same time. It also allows the possiblity of simultaneous fitting/inferencing by taking into account
multiple output variables including spike trains.

In following documentation we assume that brianZmodelfitting has been installed and imported as follows:

from brian2modelfitting import =«

Installation

To install the toolbox alongside Brian 2 simulator, use pip as follows:

pip install brianZ2modelfitting

brian2modelfitting, Release 0.4+git

Testing Model Fitting

Version on master branch gets automatically tested with Travis services. To test the code yourself, you will need to
have pytest installed and run the following command inside the brian2modelfitting root directory:

pytest

2.1.2 How it works
Fitting

Model fitting script requires three components:
« afitter: object that will perform the optimization
* ametric: objective function
* an optimizer: optimization algorithm

All of which need to be initialized for fitting application. Each optimization works with a following scheme:

opt = Optimizer ()

metric = Metric ()
fitter = Fitter(...)
result, error = fitter.fit (metric=metric, optimizer=opt, ...)

The proposed solution is developed using a modular approach, where both the optimization method and the objective
function can be easily swapped out by a user-defined custom implementation.

Fitter objects require a model defined as an Equations object or as a string, that has parameters that will be
optimized specified as constants in the following way:

model = ''"'
g_na : siemens (constant)
g_kd : siemens (constant)
gl : siemens (constant)

Initialization of Fitter requires:
e dt - the time step
e input - a dictionary with the name of the input variable and a set of

input traces (list or array) - output - a dictionary with the name of the output variable(s) and a set of goal
output (traces/spike trains) (list or array) - n_samples - a number of samples to draw in each round (limited
by method) - reset and threshold in case of spiking neurons (can take refractory as well)

Additionally, upon call of it (), object requires:
* n_rounds - a number of rounds to optimize over
* parameters with ranges to be optimized over

Each free parameter of the model that shall be fitted is defined by two values:

param_name = [lower_bound, upper_bound]

6 Chapter 2. Contents

https://brian2.readthedocs.io/en/stable/reference/brian2.equations.equations.Equations.html#brian2.equations.equations.Equations

brian2modelfitting, Release 0.4+git

Ready to use elements

Optimization classes:

* TraceFitter

e SpikeFitter

* OnlineTraceFitter
Optimization algorithms:

* NevergradOptimizer

e SkoptOptimizer
Metrics:

e MSEMetric (for TraceFitter)

* GammaFactor (for SpikeFitter)

Example of TraceFitter with all of the necessary arguments:

fitter = TraceFitter (model=model,

input={'I': inp_traces},
output={'v': out_traces},
dt=0.1*ms,

n_samples=5)

result, error = fitter.fit (optimizer=optimizer,

metric=metric,

n_rounds=1,

gl=[le-8xsiemens*cmx*-2 x area, le-3*siemens*cmx*—2 *
—areal))

Remarks

¢ After performing first fitting round, user can continue the optimization with another it () run.

* Number of samples can not be changed between rounds or 71 ¢ () calls, due to parallelization of the simulations.

Warning: User is not allowed to change the optimizer or metric between £it () calls.

e When using the TraceFitter, users can use a standard curve fitting algorithm for refinement by calling
refine.

Simulation-based inference
The Inferencer class has to be initialized within the script that will perform a simulation-based inference proce-
dure.
Initialization of Tnferencer requires:
e dt - the time step in Brian 2 units.

* model - single cell model equations, defined as either string or as brian2.Equation object.

2.1. Model Fitting 7

brian2modelfitting, Release 0.4+git

e input - a dictionary where key corresponds to the name of the input variable as defined in model and value
corresponds to an array of input traces.

* output - adictionary where key corresponds to the name of the output variable as defined in mode1 and value
corresponds to an array of recorded traces and/or spike trains.

inferencer = Inferencer (dt=0.1lxms, model=eqgs,
input={'I': inp_tracesxamp},
output={'v': out_traces*mV})

Optionally, arguments to be passed to the constructor are:

» features - adictionary of callables that take the voltage trace and/or spike trains and output summary statis-
tics. Keys correspond to output variable names, while values are lists of callables. If features are not provided,
automatic feature extraction will be performed either by using the default multi-layer perceptron or by using the
user-provided embedding network.

* method - a string that defines an integration method.

e threshold - optional string that defines the condition which produces spikes. It should be a single line
boolean expression.

* reset - an optional (multi-line) string that that holds the code to execute on reset.

* refractory - can be either Boolean expression or string. Defines either the length of the refractory period
(e.g., 2+ms), a string expression that evaluates to the length of the refractory period after each spike, e.g., ' (1
+ rand())xms', or a string expression evaluating to a boolean value, given the condition under which the
neuron stays refractory after a spike, e.g., 'v > —-20+mV'.

* param_init - adictionary of state variables to be initialized with respective values, i.e., initial conditions.

inferencer = Inferencer (dt=dt, model=eqgs_inf,
input={'I': inp_tracexamp},
output={'v': out_traces*mV},
features={'v': voltage_feature_list},
method='exponential_ euler',
threshold='v > -50+xmV"',
reset='v = -70xmV’',
param_init={'v': -70xmV})

Inference

After the Tnferencer class is instantiated, the simplest and the most convenient way to start with the inferencer
procedure is by calling infer method on Tnferencer object.

In the nutshell, infer method returns the trained neural posterior object, which may or may not be used by the user, but
it has to exist. There are two possible approaches:

¢ amortized inference
¢ multi-round inference

If the number of inference rounds is 1, then amortized inference will be performed. Otherwise if the number of
inference rounds is 2 or above, the focused multi-round inference will be performed. Multi-round inference, unlike
the amortized one, is focused on a particular observation, where in each new round of inference, samples are drawn
from the posterior distribution conditioned exactly by this observation. This process can be repeated aribtrarily many
times to get increasingly better approximations of the the posterior distribution.

The infer method requires:

8 Chapter 2. Contents

brian2modelfitting, Release 0.4+git

* n_samples - the number of samples from which the neural posterior will be learnt.
or:

* theta - sampled prior.

* and x - summary statistics.
along with the:

* params - a dictionary of bounds for each free parameter defined in the model. Keys should correspond
to names of parameters as defined in the model equations, values are lists with lower and upper bounds with
quantities of respective parameter.

The simplest way to start the inference process is by calling:

posterior = inferencer.infer (n_samples=1000,
gl=[10%nS, 100%nS],
C=[0.1xnF, 10%nF])

Optionally, user can defined the following arguments:

* n_rounds - if it is set to 1, amortized inference will be performed. Otherwise, if n_rounds is integer larger
than 1, multi-round inference will be performed. This is only valid if the posterior has not yet been defined. Oth-
erwise, if this method is called after the posterior has already been built, multi-round inference is performed, e.g.
repeated calling of ~brian2modelfitting.inferencer.Inferencer.infer method or manually
building the posterior by approaching the inference with flexible inference.

e inference_method - either SNPE, SNLE or SNRE.

* density_estimator_model - string that defines the type of density estimator to be created. Either mdn,
made, maf, nsf for SNPE and SNLE, or 1inear, mlp, resnet for SNRE.

e inference_kwargs - a dictionary that holds additional keyword arguments for the init_inference.
* train_kwargs - a dictionary that holds additional keyword arguments for t rain.
* posterior_kwargs - a dictionary that holds additional keyword arguments for build posterior.

* restart - when the method is called for a second time, set to True if amortized inference should be performed.
If False, multi-round inference with the existing posterior will be performed.

* sbi_device a string that defines the device on which the sbi and subseqently the torch will operate. By
default this is set to cpu and it is advisable to remain so for most cases. In cases where the user provides custom
embedding network through inference_kwargs argument, which will be trained more efficiently by using
GPU, device should be set accordingly to gpu.

A bit more comprehensive specification of the infer call is showcased below:

posterior = inferencer.infer (n_samples=5_000,
n_rounds=3,
inference_method='SNPE',
density_estimator_model='mdn',
restart=True,
sbi_device="cpu',
gl=[10%nS, 100%nS],
C=[0.1%nF, 10%nF])

2.1. Model Fitting 9

brian2modelfitting, Release 0.4+git

Remarks

For a better understanding, please go through examples that go step-by-step through the entire process. Currently,
there are two tutorials: the one that is covering simple interface, appropriate for the regular user, and the one that
goes a bit more in-depth by using flexible interface, and shows how to manually go through the process of inference,
storing/loading the training data and the trained neural density estimator, parameter space visualization, conditioning,
etc.

2.1.3 Tutorial: TraceFitter

In following documentation we will explain how to get started with using TraceFitter. Here we will optimize
conductances for a Hodgkin-Huxley cell model.

We start by importing brian2 and brian2modelfitting:

from brian2 import =«
from brian2modelfitting import =«

Problem description

We have five step input currents of different amplitude and five “data samples” recorded from the model with goal
parameters. The goal of this exercise is to optimize the conductances of the model g1, g_na, g_kd, for which we
know the expected ranges.

Visualization of input currents and corresponding output traces which we will try to fit:

input currents (nA) membrane potential (mv)
50 | &0
o h
40 -
20 1
30 01
_20 -
20 1
_40 p
10 —&0 A
—a0 A
D 4
T T T T T T T T T T T T T T T T
0 20 40 B0 BO 100 120 140 0 20 40 B0 B0 100 120 140
time {ms} time {ms}

We can load these currents and “recorded” membrane potentials with the pandas library

import pandas as pd
inp_trace = pd.read_csv('input_traces_hh.csv', index_col=0) .to_numpy ()
out_trace = pd.read_csv ('output_traces_hh.csv', index_col=0) .to_numpy ()

Note: You can download the CSV files used above here: input_traces_hh.csv, output_traces_hh.csv

10 Chapter 2. Contents

https://brian2modelfitting.readthedocs.io/en/stable/examples/hh_sbi_simple.html
https://brian2modelfitting.readthedocs.io/en/stable/examples/hh_sbi_flex.html

brian2modelfitting, Release 0.4+git

Procedure

Model definition

We have to specify all of the constants for the model

area = 20000xumetrex«*2
Cm=1l+ufaradrcmx*—2 * area
El=-65+mV

EK=-90+*mV

ENa=50+mV

VT=-63+mV

Then, we have to define our model:

model = "'"'
dv/dt (gl* (E1-v) — g_nax (mxm*m) *h* (v-ENa) - g_kd* (n*n*nn)* (v-EK) + I)/Cm : volt
dm/dt = 0.32% (mVxx—1)* (13.+*mV-v+VT) /

(exp ((13.+mV-v+VT)/ (4.xmV))-1.)/ms* (1-m)—-0.28% (mV**—1) * (v-VT-40.+mV) /

(exp ((Vv=VT=40.+mV)/ (5.*mV))—-1.)/ms+m : 1
dn/dt = 0.032% (mVxx—1) % (15.*mV-v+VT) /

(exp ((15.+mV-v+VT) /(5.xmV))-1.)/ms* (1.-n)—-.5xexp ((10.+mV-v+VT)/ (40.+mV)) /ms*n : 1
dh/dt = 0.128*exp ((17.+mV-v+VT)/ (18.xmV)) /ms* (1.-h)-4./(1l+exp ((40.+*mV-v+VT)/(5.+mV)))/
—msxh : 1

g_na : siemens (constant)
g_kd : siemens (constant)
gl : siemens (constant)

Note: You have to identify the parameters you want to optimize by adding them as constant variables to the equation.

Optimizer and metric

Once we know our model and parameters, it’s time to pick an optimizing algorithm and a metric that will be used as a
measure.

For simplicity we will use the default method provided by the Neve rgradOpt imizer,i.e. “Differential Evolution”,
and the MSEMet ric, calculating the mean squared error between simulated and data traces:

opt = NevergradOptimizer ()
metric = MSEMetric ()

Fitter Initiation

Since we are going to optimize over traces produced by the model, we need to initiate the fitter TraceFitter: The
minimum set of input parameters for the fitter, includes the model definition, input and output variable names
and traces, time step dt, number of samples we want to draw in each optimization round.

fitter = TraceFitter (model=model,
input={'I'"': inp_tracexamp},
output={'v': out_tracexmV},

(continues on next page)

2.1. Model Fitting 11

brian2modelfitting, Release 0.4+git

(continued from previous page)

dt=0.01l*ms, n_samples=100, method='exponential euler',
param_init={'v': —-65+mV})

Additionally, in this example, we pick the integration method to be 'exponential_euler"', and we specify the
initial value of the state variable v, by using the option: param_init={'v': —65+mV}.

Fit

We are now ready to perform the optimization, by calling the i t method. We need to pass the opt imizer,metric
and pick a number of rounds(n_rounds).

Note: Here you have to also pass the ranges for each of the parameters that was defined as a constant!

res, error = fitter.fit (n_rounds=10,
optimizer=opt,
metric=metric,
gl=[2+psiemens, 200+nsiemens],
g_na=[200*nsiemens, 0.4xmsiemens],
g_kd=[200*nsiemens, 200+usiemens])

Qutput:
* res: dictionary with best fit values from this optimization
e error: corresponding error

The default output during the optimization run will tell us the best parameters in each round of optimization and the
corresponding error:

Round 0: fit [9.850944960633812e-05, 5.136956717618642e-05, 1.132001753695881e-07]_,
—with error: 0.00023112503428419085

Round 1: fit [2.5885625978001192e-05, 5.994175009416155e-05, 1.132001753695881e-07]_,
—with error: 0.0001351283127819249

Round 2: fit [2.358033085911261e-05, 5.2863196016834924e-05, 7.255743458079185e-08]_,
—with error: .600916130059129e-05

Round 3: fit [2.013515980650059e-05, 4.5888592959196316e-05, 7.3254174819061e-08]_,
—with error: 5.704891495098806e-05

Round 4: fit [9.666300621928093e-06, 3.471303670631636e-05, 2.6927249265934296e-08]_,
—with error: 3.237910401003197e-05

Round 5: fit [8.037164838105382e-06, 2.155149445338687e-05, 1.9305129338706338e-08]_,
—with error: 1.080794896277778e-05

Round 6: fit [7.161113899555702e-06, 2.2680883630214104e-05, 2.369859751788268e-08]_,
—with error: 4.527456021770018e-06

Round 7: fit [7.471475084450997e-06, 2.3920164839406964e-05, 1.7956856689140395e-08],
—with error: 4.4765688852930405e-06

Round 8: fit [6.511156620775884e-06, 2.209792671051356e-05, 1.368667359118384e-08]_,
—with error: 1.8105782339584402e-06

Round 9: fit [6.511156620775884e-06, 2.209792671051356e-05, 1.368667359118384e-08]_,
—with error: 1.8105782339584402e-06

[ee]

12 Chapter 2. Contents

brian2modelfitting, Release 0.4+git

Generating traces

To generate the traces that correspond to the new best fit parameters of the model, you can use the
generate_traces method.

traces = fitter.generate_traces|()

The following plot shows the fit traces in comparison to our target data:

input current (nA)

' time {ms}

— farget

membrane potential (my)

_50.__’ JL_, 1 l/_,_ / /..._ jp—— | o n——

The fit looks good in general, but if we zoom in on the fourth column we see that the fit is still not perfect:

2.1. Model Fitting 13

brian2modelfitting, Release 0.4+git

) !‘

= —10 1

=

E

[

£ 20 1

LH

=

=8

E _30 -

5

E

wu

E —40 A

_50 I I I I !

50 60 70 80 80 100

time {ms)

We can improve the fit by using a classic, sequential curve fitting algorithm.
Refining fits

When using TraceFitter, you can further refine the fit by applying a standard least squares fitting algorithm (e.g.
Levenberg—Marquardt), by calling refine. By default, this will start from the previously found best parameters:

refined_params, result_info = fitter.refine()

We can now generate traces with the refined parameters:

traces = fitter.generate_traces (params=refined_params)

Plotting the results, we see that the fits have improved and now closely match the target data:

14 Chapter 2. Contents

brian2modelfitting, Release 0.4+git

membrane potential (mV)

membrane potential (mV)

input current (nA)

time {ms}

— target
— fit

20

—20 4

_40. 4

_ED 4

_1[|. B

_Eﬂ. B

=30 1

—40 -

70 a0
time {ms}

2.1.4 Tutorial: Inferencer

In this tutorial, we use simulation-based inference on the Hodgkin-Huxley neuron model, [Hodgkin1952], where
different scenarios are considered. The data are synthetically generated from the model which enables the comparisson

2.1.

Model Fitting 15

brian2modelfitting, Release 0.4+git

of the optimized parameter values with the ground truth parameter values as used in the generative model.

We start with importing basic packages and modules. Note that tutorial_sbi_helpers contains three different
functions that are used extensively throughout this tutorial. Namely, plot_traces is used for visualization of the
input current and output voltage traces, and optionally for visualization of spike trains or sampled traces obtained by us-
ing an estimated posterior. In order to detect and capture spike events in a given voltage trace, we use spike_times
function. Finally, plot_cond_coeff_mat is used to visualize conditional coerrelation matrix. For a detailed
overview of the mechanism of each of the functions, download the script: tutorial_sbi_helpers.py

from brian2 import =«

from brian2modelfitting import Inferencer

from scipy.stats import kurtosis as kurt

from tutorial_ sbi_helpers import (spike_times,
plot_traces,
plot_cond_coeff_mat)

Now, let’s load the input current and output voltage traces by using NumPy. Note that all functions available in NumPy,
as well as in Matplot1ib, are implicitly available after brian2 was imported.

inp_traces load('input_traces_synthetic.npy') .reshape(l, -1)
out_traces = load('output_traces_synthetic.npy') .reshape(l, -1)

The data is generated by running generate_traces_synthetic.py script:
generate_traces_synthetic.py

By setting the time step, we are able to set up the time domain. From the array of time steps, we also define the exact
time when the stimulus starts and when it ends by computing stim_start and stim_end, respectively. This will
come handy later during the feature extraction process.

dt = 0.05+ms
t = arange (0, inp_traces.sizexdt/ms, dt/ms)
stim_start, stim_end = t[where(inp_traces[0, :] != 0)[0][[0, —-111]

By calling plot_traces and passing the array of time steps, the input current and output voltage traces, we obtain
the visualization of a synthetic neural activity recordings:

fig, ax = plot_traces(t, inp_traces, out_traces)
507 === racordings
> 0
E
=~
=50 1
0.5 i
2 I—___’__—_—’——"'—':_‘snmuIus,
- 00 - T T T T T I T
0 200 400 600 800 1000
t [ms]

Toy-example: infer two free parameters

The first scenario we cover is a simple inference procedure of two unknown parameters in the Hodgkin-Huxley neuron
model. The parameters to infer are the maximal value of sodium, gy,, and potassium electrical conductances, gy .

16 Chapter 2. Contents

brian2modelfitting, Release 0.4+git

By following the standard practice from Brian 2 simulator, we have to define parameters of the model, initial conditions
for differential equations that describe the model, and the model itself:

set parameters of the model
E_Na = 53+mV
E_K = -107+mV
E_.1 = -70+mV
VT = -60.0+mV

g_1l = 10%nS
Cm = 200xpF

set ground truth parameters, which are unknown from the model's perspective
ground_truth_params = {'g_Na': 32xuS,
'g K': 1xuS}

define initial conditions

init_conds = {'v': '"E_1",
'm': 'l / (1 + beta_m / alpha_m)',
'h': 'l / (1 + beta_h / alpha_h)"',
'n': 'l / (1 + beta_n / alpha_n)'}

define the Hodgkin-Huxley neuron model

T

eqgs =
non-linear set of ordinary differential equations
dv/dt = - (g_Na m *x 3 x h » (v - E_Na)
+ g_ K * n xx 4 x (v — E_K)
+ g_1 x (v - E_1) - I) / Cm : volt
dm/dt = alpha_m * (1 — m) - beta_m * m : 1
dn/dt = alpha_n * (1 — n) — beta_n * n : 1

dh/dt = alpha_h * (1 - h) - beta_h = h : 1

time independent rate constants for a channel activation/inactivation

alpha_m = ((-0.32 / mV) % (v — VT - 13.*mV))
/ (exp((-(v = VT - 13.xmV)) / (4.xmV)) - 1) / ms : Hz
beta_m = ((0.28/mV) = (v — VT — 40.xmV))

/ (exp((v = VT - 40.+mV) / (5.*mV)) - 1) / ms : Hz
alpha_h = 0.128 * exp(-(v — VT — 17.*mV) / (18.xmV)) / ms : Hz
beta_h =4 / (1 + exp((-(v = VT - 40.+«mV)) / (5.*mV))) / ms : Hz
alpha_n = ((-0.032/mV) % (v — VT = 15.%mV))

/ (exp((-(v — VT - 15.xmV)) / (5.xmV)) - 1) / ms : Hz
beta_n = 0.5 » exp(-(v — VI - 10.xmV) / (40.*mV)) / ms : Hz

free parameters
g_Na : siemens (constant)
g_K : siemens (constant)

Since the output of the model is extremely high-dimensional, and since we are interested only in a few hand-picked
features that will capture the gist of the neuronal activity, we start the inference process by defining a list of summary
functions.

Each summary feature is obtained by calling a single-valued function on each trace generated by using a sampled prior
distribution over unknown parameters. In this case, we consider the maximal value, mean and standard deviatian of
action potential, and the membrane resting potential.

v_features = [
max action potential
lambda x: np.max(x[(t > stim_start) & (t < stim_end)]),

(continues on next page)

2.1. Model Fitting 17

brian2modelfitting, Release 0.4+git

(continued from previous page)

mean action potential

lambda x: np.mean(x[(t > stim_start) & (t < stim_end)]),

std of action potential

lambda x: np.std(x[(t > stim_start) & (t < stim_end)]),

membrane resting potential

lambda x: np.mean(x[(t > 0.1 » stim_start) & (t < 0.9 % stim_start)])

Inferencer

The minimum set of arguments for the Tnferencer class constructor are the time step, dt, input data traces,
input, output data traces, output, and the model that will be used for the inference process, model. Input and
output traces should have the number of rows that corresponds to the number of observed traces, and the number of
columns should be equal to the number of time steps in each trace.

Here, we define additional arguments such as: method to define an integration technique used for solving the set
of differential equations, threshold to define a condition that produce a single spike, refractory to define a
condition under which a neuron remains refractory, and param_init to define a set of initial conditions. We also
define the set of summary features that is used to represent the data instead of using the entire trace. Summary features
are passed to the inference algorithm via features argument.

inferencer = Inferencer (dt=dt, model=eqgs,
input={'I': inp_tracesxamp},
output={'v': out_traces*mV},
features={'v': v_features},
method="'exponential_euler',
threshold='m > 0.5",
refractory='m > 0.5',
param_init=init_conds)

After the inferencer is instantiated, we may begin the inference process by calling i nfer and defining the total
number of samples that are used for the training of a neural density estimator. We use the sequential neural posterior
estimation algorithm (SNPE), proposed in [Greenberg2019].

Posterior

Neural density estimator learns the probabilistic mapping of the input data, i.e., sampled parameter values given a
prior distribution, and the output data, i.e., summary features extracted from the traces, obtained by solving the model
with the corresponding set of sampled parameters from the input data.

We can choose the inference method and the estimator model , but only arguments that i n fer requires are the number
of samples (in case of running the inference process for the first time), n_samples, and upper and lower bounds for
each unknown parameter.

posterior = inferencer.infer (n_samples=15_000,
n_rounds=1,
inference_method='SNPE',
density_estimator_model="maf',
g_Na=[1lxuS, 100%usS],
g_K=[0.1xus, 10%uS])

After inference is completed, the estimated posterior distribution can be analyzed by observing the pairwise relation-
ship between each pair of parameters. But before, we have to draw samples from the estimated posterior as follows:

18 Chapter 2. Contents

brian2modelfitting, Release 0.4+git

samples = inferencer.sample((10_000,))

The samples are stored inside the Inferencer object and are available through samples variable. We create a
visual representation of the pairwise relationship of the posterior as follows:

limits = {'g_Na': [1%uS, 100xuS]

4
'g K': [0.1xuS, 10xuS]}
labels = {'g_Na': r'sS\overline - s,
'g_K': r'S$\overline o STy
fig, ax = inferencer.pairplot (limits=1limits,

labels=1labels,

ticks=limits,
points=ground_truth_params,
points_offdiag={'markersize': 5},
points_colors=["'C3'],

figsize=(6, 6))

le-07 1le-05

le-06 0.0001
gﬂa

Let’s zoom in a bit:

2.1. Model Fitting 19

brian2modelfitting, Release 0.4+git

5e-07 1.5e-06

3e-05 3.4e-05
§Na

The inferred posterior is plotted against the ground truth parameters, and as can be seen, the ground truth parameters
are located in high-probability regions of the estimated distribution.

To further substantiate this, let’s now see the traces simulated from a single set of parameters sampled from the
posterior:

inf_traces = inferencer.generate_traces/()

We again use the plot_traces function as follows:

fig, ax = plot_traces(t, inp_traces, out_traces, inf_traces=array (inf_traces/mV))

507 === recordings
== sampled traces
> 0
E
>
=50 1
0.5 A
< //_:stimulus
T 0.0+ I .
0 200 400 600 800 1000
t [ms]

20 Chapter 2. Contents

brian2modelfitting, Release 0.4+git

Additional free parameters

The simple scenarios where only 2 parameters are considered works quite well using synthetic data traces. What if we
have a larger number of unkown parameters? Let’s now consider additional unkown parameters for the same model
as before. In addition to the unknown maximal values of the electrical conductance of the sodium and potassium
channels, the membrane capacity, C,,,, and the maximal value of the electrical conductance of the leakage ion channel,

G, are also unknown.

We can try to do the same as before with a bit more training data:

del Cm, g_1

set parameters, initial condition and the model
E_Na = 53»mV
E_K = -107+mV
E_1 = -70*mV
VT = -60.0+mV

ground_truth_params = {'g_Na': 32%uS,
'g_K': 1xus,
'g_1l': 10%nS,
'Cm': 200+pF}

init_conds = {'v': 'E_1"',

'm': 'l / (1 + beta_m / alpha_m)',
'h': 'l / (1 + beta_h / alpha_h)"',
(1 + beta_n / alpha_n)"'}

'n': '1 /
egs = '"!'
non-linear set of ordinary differential equations
dv/dt = - (g_Na » m *x 3 x h » (v - E_Na)
+ g K xn xx 4 x (v — E_K)
+ g1 (v -—E_1) —1I) / Cm: volt
dm/dt = alpha_m * (1 — m) — beta_m * m : 1
dn/dt = alpha_n * (1 — n) - beta_n * n : 1
dh/dt = alpha_h * (1 - h) - beta_h % h : 1

time independent rate constants for activation and inactivation

alpha_m = ((-0.32 / mV) % (v — VT - 13.xmV))
/ (exp((=(v = VT = 13.xmV)) / (4.»mV)) - 1) / ms : Hz
beta_m = ((0.28/mV) x (v — VT — 40.xmV))

(
/ (exp((v — VT - 40.*mV) / (5.xmV)) - 1) / ms : Hz
0

)
alpha_h = 0.128 * exp(—(v — VT — 17.xmV) / (18.xmV)) / ms : Hz
beta_h =4 / (1 + exp((-(v = VT - 40.xmV)) / (5.»mV))) / ms : Hz
alpha_n = ((-0.032/mV) % (v — VT - 15.%mV))
/ (exp((=(v = VT = 15.*mV)) / (5.»mV)) - 1) / ms : Hz
beta_n = 0.5 x exp(—(v - VI - 10.*mV) / (40.*mV)) / ms : Hz

free parameters

g_Na : siemens (constant)
g_K : siemens (constant)
g_l : siemens (constant)
Cm : farad (constant)

T

infer the posterior using the same configuration as before
inferencer = Inferencer (dt=dt, model=egs,
input={'I'"': inp_traces~*amp},

(continues on next page)

2.1. Model Fitting

21

brian2modelfitting, Release 0.4+git

(continued from previous page)

out_traces mV},
v_features},

output={'v':
features={'v':
method="'exponential_euler',
threshold='m > 0.5",
refractory='m > 0.5"',
param_init=init_conds)

posterior = inferencer.infer (n_samples=20_000,
n_rounds=1,
inference_method="'SNPE',
density_estimator_model="maf',
g_Na=[1lxuS, 100%uS],
g_K=[0.1%us, 10xus],
g_1l=[1%nS, 100%nS],
Cm=[20%pF, 2xnF])
finally, sample and visualize the posterior distribution
samples = inferencer.sample ((10_000,))
limits = {'g_Na': [1lxuS, 100%uS],
'g K': [0.1xuS, 10%uS],
'g_1l': [1xnS, 100%nS],
'Cm': [20%pF, 2xnF]}
labels = {'g_Na': r's\overline s,
'g_K': r'S$\overline s,
'g_1l': r'S$\overline s,
'Cm': r'sC_ S
fig, ax = inferencer.pairplot(limits=limits,

labels=labels,
ticks=limits,
points=ground_truth_params,

points_offdiag={'markersize':

points_colors=['C3'],
figsize=(6, 6))

5}’

22

Chapter 2. Contents

brian2modelfitting, Release 0.4+git

le- 07 le-05

gk

- 1

le-06 0.0001
§Na

S

J

1e-09 le-07

g

This could have been expected. The posterior distribution is estimated poorly using a simple approach as in the toy
example.

Yes, we can play around with hyper-parameters and tuning the neural density estimator, but with this apporach we will
not get far.

We can, however, try with the non-amortized (or focused) approach, meaning we perform multi-round inference,
where each following round will use the posterior from the previous one to sample new input data for the training,
rather than using the same prior distribution as defined in the beginning. This approach yields additional advantage -
the number of samples may be considerably lower, but it will lead to the posterior that is no longer being amortized -
it is accurate only for a specific observation.

note that the only difference is the number of rounds of inference
posterior = inferencer.infer (n_samples=10_000,

n_rounds=2,

inference_method='SNPE',

density_estimator_model="maf',

restart=True,

g_Na=[1xuS, 100%us],

g_K=[0.1xus, 10%uSsS],

g_1l=[1%xnS, 100%nS],

=[20%pF, 2xnF])

samples = inferencer.sample ((10_000,))

fig, ax = inferencer.pairplot (limits=limits,
labels=1labels,

(continues on next page)

2.1. Model Fitting 23

brian2modelfitting, Release 0.4+git

(continued from previous page)

ticks=limits,
points=ground_truth_params,
points_offdiag={'markersize': 5},
points_colors=['C3'],

figsize=(6, 6))

1
2e-11 2e-09
Cm L
1
1le-07 le-05

gk

. |

1e-06 0.0001
§Na

e

}

1e-09 le-07

g
This seems as a promising approach for parameters that already have the high-probability regions of the posterior
distribution around ground-truth values. For other parameters, this leads to further deterioration of posterior estimates.
So, we may wonder, how else can we improve the neural density estimator accuracy?

Currently, we use only four features to describe extremely complex output of a neural model and should probably
create a more comprehensive and more descriptive set of summary features. If we want to include data related to
spikes in summary statistics, it is necessary to perform multi-objective optimization since we will observe spike trains
as an output in addition to voltage traces.

Multi-objective optimization

In order to use spikes, we have to have some observation to pass to the Tnferencer. We can utilize spike_times
as follows:

spike_times_list = [spike_times(t, out_trace) for out_trace in out_traces]

To visually prove that spike times are indeed correct, we use plot_traces:

24 Chapter 2. Contents

brian2modelfitting, Release 0.4+git

fig, ax = plot_traces(t, inp_traces, out_traces, spike_times_1list[0])

507 === racordings
= spikes
S 0
E
>
—50 1
0.5 -
g r—_'_”—’_—_—_’—:.Stlrﬁ|.JIl.:lSa
- 00 - T T T T T l T
0 200 400 600 800 1000

t [ms]

Now, let’s create additional features that will be applied to voltage traces, and a few features that will be applied to
spike trains:

def voltage_deflection(x):
voltage_base = np.mean(x[t < stim_start])
stim_end_idx = np.where(t >= stim_end) [0] [0]
steady_state_voltage_stimend = np.mean(x[stim_end_idx-10:stim_end_idx-5])
return steady_state_voltage_stimend - voltage_base

v_features = [
max action potential
lambda x: np.max (x[(t > stim_start) & (t < stim_end)]),
mean action potential
lambda x: np.mean(x[(t > stim_start) & (t < stim_end)]),
std of action potential
lambda x: np.std(x[(t > stim_start) & (t < stim_end)]),
kurtosis of action potential
lambda x: kurt(x[(t > stim_start) & (t < stim_end)], fisher=False),
membrane resting potential
lambda x: np.mean(x[(t > 0.1 % stim_start) & (t < 0.9 % stim_start)]),
the voltage deflection between base and steady-state voltage
voltage_deflection,

s_features = [
number of spikes in a train
lambda x: x.size,
mean inter-spike interval

lambda x: 0. if np.diff(x).size == 0 else np.mean(diff (x)),
time to first spike
lambda x: 0. if x.size == 0 else x[0]

The rest of the inference process stays pretty much the same as before:

inferencer = Inferencer (dt=dt, model=eqgs,
input={'I': inp_tracesxamp},
output={'v': out_traces mV, 'spikes': spike_times_list},
features={'v': v_features, 'spikes': s_features},

(continues on next page)

2.1. Model Fitting 25

brian2modelfitting, Release 0.4+git

(continued from previous page)

method='exponential_ euler',
threshold='m > 0.5",
refractory='m > 0.5',
param_init=init_conds)

posterior = inferencer.infer (n_samples=20_000,
n_rounds=1,
inference_method='SNPE',
density_estimator_model="maf',
g_Na=[1lxuS, 100%usS],
g_K=[0.1xuS, 10%us],
g_1l=[1%xnS, 100%nS],
Cm=[20xpF, 2*nF])

samples = inferencer.sample((10_000,))

fig, ax = inferencer.pairplot (limits=limits,
labels=1labels,
ticks=limits,
points=ground_truth_params,
points_offdiag={'markersize': 5},
points_colors=["'C3"'],
figsize=(6, 6))

2e-11 2e-09

- 1

le-06 0.0001
§Na

1e-09 le-07

g

Let’s also visualize the sampled trace, this time using the mean of ten thousands drawn samples:

26 Chapter 2. Contents

brian2modelfitting, Release 0.4+git

inf_traces = inferencer.generate_traces (n_samples=10_000, output_var='v")

fig, ax = plot_traces(t, inp_traces, out_traces, inf_traces=array (inf_traces/mV))

207 === racordings
== sampled traces
> 0
E
>
—50 A 1
0.5 1
< r___—_____________————-""-—-_':::—;ﬁmuMS
T 0.0 1 l :
0 200 400 600 800 1000
t [ms]

Okay, now we are clearly getting somewhere and this should be a strong indicatior of the importance of crafting quality
summary statistics.

Still, the summary statistics can be a huge bottleneck and can set back the training of a neural density estimator. For
this reason automatic feature extraction can be considered instead.

Automatic feature extraction

To enable automatic feature extraction, features argument simly should not be defined when instantiating an infer-
encer object. And that’s it. Everything else happens behind the scenes without any need for additional user interven-
tion. If the user wants to gain additional control over the extraction process, in addition to changing the hyperparame-
ters, they can also define their own embedding neural network.

Default settings

inferencer = Inferencer (dt=dt, model=eqgs,
input={'I': inp_tracesxamp},
output={'v': out_tracesxmV},
method='exponential euler',
threshold='m > 0.5",
refractory='m > 0.5"',
param_init=init_conds)

posterior = inferencer.infer (n_samples=20_000,
n_rounds=1,
inference_method='SNPE',
density_estimator_model="maf',
g_Na=[1lxuS, 100%uS],
g_K=[0.1xus, 10%uS],

g_1=[1%nS, 100%nS],

Cm=[20%pF, 2xnF])

samples = inferencer.sample((10_000,))

fig, ax = inferencer.pairplot(limits=limits,

(continues on next page)

2.1. Model Fitting 27

brian2modelfitting, Release 0.4+git

(continued from previous page)

labels=labels,

ticks=limits,
points=ground_truth_params,
points_offdiag={'markersize': 5},
points_colors=["'C3'],

figsize=(6, 6))

2e-11 2e-09

- 1

le-06 0.0001
§Na

Custom embedding network

Here, we demonstrate how to build a custom summary feature extractor and how to exploit the GPU processing power
to speed up the inference process.

Note that the use of the GPU will result in the speed-up of computation time only if a custom automatic feature
extractor uses techniques that are actually faster to compute on the GPU.

For this case, we use the YuleNet, a convolutional neural network, proposed in [Rodrigues2020]. The authors outline
impresive results where the automatic feature extraction by using the YuleNet is capable of outperforming carefully
hand-crafted features.

import torch
from torch import nn

class YuleNet (nn.Module) :

(continues on next page)

28 Chapter 2. Contents

brian2modelfitting, Release 0.4+git

(continued from previous page)

"""The summary feature extractor proposed in Rodrigues 2020.

Parameters

in_features : int
Number of input features should correspond to the size of a
single output voltage trace.

out_features : int
Number of the features that are used for the inference process.

Returns

* Rodrigues, P. L. C. and Gramfort, A. "Learning summary features
of time series for likelihood free inference" 3rd Workshop on
Machine Learning and the Physical Sciences (NeurIPS 2020). 2020.

mmn

def _ init_ (self, in_features, out_features):
super () .__init__ ()
self.convl = nn.Convld(in_channels=1, out_channels=8, kernel_size=64,

stride=1, padding=32, bias=True)
self.relul = nn.ReLU()
poolingl = 16
self.pooll = nn.AvgPoolld(kernel_size=poolingl)

self.conv2 = nn.Convld(in_channels=8, out_channels=8, kernel_size=64,
stride=1, padding=32, bias=True)

self.relu2 = nn.RelLU()

pooling2 = int ((in_features // poolingl) // 16)

self.pool2 = nn.AvgPoolld(kernel_size=pooling2)

self.dropout = nn.Dropout (p=0.50)

linear_in = 8 % in_features // (poolingl % pooling2) - 1

self.linear = nn.Linear (in_features=linear_in,
out_features=out_features)

self.relu3 = nn.RelLU()

def forward(self, x):
if x.ndim == 1:

X = x.view(l, 1, -1)
else:

x = x.view(len(x), 1, -1)
x_convl = self.convl (x)
x_relul = self.relul (x_convl)

x_pooll = self.pooll (x_relul)
x_conv2 = self.conv2(x_pooll)
x_relu?2 = self.relu2(x_conv2)

X_pool2 = self.pool2(x_relu2)

x_flatten = x_pool2.view(len(x), 1, -1)
x_dropout = self.dropout (x_flatten)

x = self.relu3(self.linear (x_dropout))

(continues on next page)

2.1. Model Fitting 29

brian2modelfitting, Release 0.4+git

(continued from previous page)

return x.view(len(x), -1)

In the following code, we also demonstrate how to control the hyperparameters of the density estimator by using

additional keyword arguments in infer method:

in_features = out_traces.shape[l]

out_features = 10

inferencer = Inferencer (dt=dt, model=eqgs,
input={'I': inp_tracesxamp},

output={'v': out_traces*mV},
method='exponential_ euler',

threshold='m > 0.5",
refractory="'m > 0.5'",
param_init=init_conds)

posterior = inferencer.infer (n_samples=20_000,
n_rounds=1,

inference_method="'SNPE',
density_estimator_model="'maf',
inference_kwargs={'embedding_ net':

—out_features) },

train_kwargs={'num atoms':
'training_batch_size':
'use_combined_loss':
'discard_prior_samples':

sbi_device="gpu',

g_Na=[1lxuS, 100%uSsS],
g_K=[0.1xus, 10%uS],
g_1l=[1%nS, 100%nS],

Cm=[20*pF, 2xnF])
samples = inferencer.sample((10_000,))
fig, ax = inferencer.pairplot(limits=limits,

labels=1labels,
ticks=limits,

points=ground_truth_params,
points_offdiag={'markersize':
points_colors=['C3'],

figsize=(6, 6))

YuleNet (in_features,

100,

True},

30

Chapter 2. Contents

brian2modelfitting, Release 0.4+git

1
2e-11 2e-09
Cm
le-07
1e-06 0.0001
§Na
| |
1e-09 le-07
a
Next steps

To learn more read the reference API and check out more examples available Zere.

References
2.2 Optimizer

Optimizer class is responsible for maximizing a fitness function. Our approach uses gradient free global optimization
methods (evolutionary algorithms, genetic algorithms, Bayesian optimization). We provided access to two libraries.

* Nevergrad
* Scikit-Optimize (skopt)

* Custom Optimizer

2.2.1 Nevergrad

Offers an extensive collection of algorithms that do not require gradient computation. NevergradOptimizer can
be specified in the following way:

2.2. Optimizer 31

brian2modelfitting, Release 0.4+git

opt = NevergradOptimizer (method='PSO")

where method input is a string with specific optimization algorithm.
Available methods include:

¢ Differential evolution. ['DE ']

¢ Covariance matrix adaptation.['CMA ']

e Particle swarm optimization.['PSO ']

 Sequential quadratic programming.[' SQP ']

Nevergrad is still poorly documented, to check all the available methods use the following code:

from nevergrad.optimization import registry
print (sorted(registry.keys()))

2.2.2 Scikit-Optimize (skopt)
Skopt implements several methods for sequential model-based (“blackbox”) optimization and focuses on bayesian
methods. Algorithms are based on scikit-learn minimize function.
Available Methods:
* Gaussian process-based minimization algorithms ['GP ']
» Sequential optimization using gradient boosted trees [' GBRT ']
» Sequential optimisation using decision trees ['ET ']
* Random forest regressor [' RF ']
User can also provide a custom made sklearn regressor. SkoptOpt imizer can be specified in the following way:
Parameters:
* method = ["GP", "RF", "ET", "GBRT" or sklearn regressor, default="GP"]
e n_initial_points [int, default=10]
* acqo_func
* acg _optimizer
* random_state

For more detail check Optimizer documentation. https://scikit-optimize.github.io/#skopt.Optimizer

opt = SkoptOptimizer (method='GP', acg_func='LCB')

2.2.3 Custom Optimizer
To use a different back-end optimization library, user can provide a custom class that inherits from provided abstract
class Optimizer

User can plug in different optimization tool, as long as it follows an ask () / tell interface. The abstract class
Optimizer is prepared for different back-end libraries. All of the optimizer specific arguments have to be provided
upon optimizers initialization.

The ask () / tell interface is used as follows:

32 Chapter 2. Contents

https://scikit-optimize.github.io/#skopt.Optimizer

brian2modelfitting, Release 0.4+git

parameters = optimizer.ask()

errors simulator.run (parameters)

optimizer.tell (parameters, errors)
results = optimizer.recommend ()

2.3 Metric

A Metric specifies the fitness function measuring the performance of the simulation. This function gets applied on
each simulated trace. A few metrics are already implemented and included in the toolbox, but the user can also provide
their own metric.

* Mean Square Error
e GammaFactor

e FeatureMetric

e Custom Metric

2.3.1 Mean Square Error
MSEMetric is provided for use with TraceFitter. It calculates the mean squared difference between the data
and the simulated trace according to the well known formula:

1 ¢ 5
MSE ==Y (Y, - Vi)’
SE=_) |)

=1

It can be initialized in the following way:

’metric = MSEMetric () ‘

Additionally, MSEMet ric accepts an optional input argument start time t _start (as a Quantity). The start time
allows the user to ignore an initial period that will not be included in the error calculation.

’metric = MSEMetric (t_start=5+ms) ‘

Alternatively, the user can specify a weight vector emphasizing/de-emphasizing certain parts of the trace. For example,
to ignore the first Sms and to weigh the error (in the sense of the squared error) between 10 and 15ms twice as high as
the rest:

total trace length = 50ms
weights = np.ones (int (50+ms/dt))
weights[:int (5xms/dt)] = 0

weights[int (10+ms/dt) :int (15 ms/dt)] = 2
metric = MSEMetric (t_weights=weights)

Note that the t _weight s argument cannot be combined with t_start.

In OnlineTraceFitter, the mean square error gets calculated in online manner, with no need of specifying a
metric object.

2.3. Metric 33

https://brian2.readthedocs.io/en/stable/reference/brian2.units.fundamentalunits.Quantity.html#brian2.units.fundamentalunits.Quantity

brian2modelfitting, Release 0.4+git

2.3.2 GammaFactor

GammaFactor is provided for use with SpikeFitter and measures the coincidence between spike times in the
simulated and the target trace. It is calculcated according to:

= 2 Ncoinc - 2§Nezp're:r:p
B 1- 2A”qexp Nezp + Nmodel

Negp and Np,oqe1- number of spikes in experimental and model spike trains

Neoine - number of coincidences

Tewp - average firing rate in experimental train
2A NezpTesp - €xpected number of coincidences with a Poission process
For more details on the gamma factor, see:

» Jolivet et al. 2008, “A benchmark test for a quantitative assessment of simple neuron models”, J. Neurosci.
Methods.

* Clopath et al. 2007, “Predicting neuronal activity with simple models of the threshold type: adaptive exponential
integrate-and-fire model with two compartments.”, Neurocomp

The coincidence factor I' is 1 if the two spike trains match exactly and lower otherwise. It is O if the number of
coincidences matches the number expected from two homogeneous Poisson processes of the same rate. To turn
the coincidence factor into an error term (that is lower for better matches), two options are offered. With the
rate_correction option (used by default), the error term used is 2‘”“";_:;:‘0“‘9” — T, with 7qata and Tmodel
being the firing rates in the data/model. This is useful because the coincidence factor I' on its own can give high values
(low errors) if the model generates many more spikes than were observed in the data; this is penalized by the above
term. If rate_correctionissetto False, 1 —I'is used as the error.

Upon initialization the user has to specify the A value, defining the maximal tolerance for spikes to be considered
coincident:

metric = GammaFactor (delta=2+ms)

Warning: The delta parameter has to be smaller than the smallest inter-spike interval in the spike trains.

2.3.3 FeatureMetric

FeatureMetric is provided for use with TraceFitter. This metric allows the user to optimize the match of
certain features between the simulated and the target trace. The features get calculated by Electrophys Feature Extract
Library (eFEL) library, for which the documentation is available under following link: https://efel.readthedocs.io

To get a list of all the available eFEL features, you can run the following code:

import efel
efel.api.getFeatureNames ()

Note: Currently, only features that are described by a single value are supported (e.g. the time of the first spike can
be used, but not the times of all spikes).

To use the FeatureMet ric, you have to provide the following input parameters:

34 Chapter 2. Contents

https://doi.org/10.1016/j.jneumeth.2007.11.006
https://doi.org/10.1016/j.jneumeth.2007.11.006
https://doi.org/10.1016/j.neucom.2006.10.047
https://doi.org/10.1016/j.neucom.2006.10.047
https://efel.readthedocs.io

brian2modelfitting, Release 0.4+git

e stim_times - alist of times indicating start and end of the stimulus for each of input traces. This information
is used by several features, e.g. the voltage_base feature will consider the average membrane potential
during the last 10% of time before the stimulus (see the eFel documentation for details).

e feat_list - list of strings with names of features to be used

e combine - function to be used to compare features between output and simulated traces (uses the absolute
difference between the values by default).

Example code usage:

stim_times = [(50+ms, 100+ms), (50+ms, 100+ms), (50+ms, 100+ms), (50, 100+ms)]
feat_list = ['voltage_base', 'time_to_first_spike', 'Spikecount']
metric = FeatureMetric (traces_times, feat_list, combine=None)

Note: If times of stimulation are the same for all of the traces, then you can specify a single interval instead:
traces_times = [(50*ms, 100xms)].

2.3.4 Custom Metric

Users are not limited to the metrics provided in the toolbox. If needed, they can provide their own metric based on one
of the abstract classes TraceMetric and SpikeMetric.

A new metric will need to specify the following functions:

* get_features () calculates features / errors for each of the simulations. The representation of the model
results and the target data depend on whether traces or spikes are fitted, see below.

* get_errors () weights features/multiple errors into one final error per each set of parameters and inputs.
The features are received as a 2-dimensional ndarray of shape (n_samples, n_traces) The out-
put has to be an array of length n_samples, i.e. one value for each parameter set.

e calc () performs the error calculation across simulation for all parameters of each round. Already imple-
mented in the abstract class and therefore does not need to be reimplemented necessarily.

TraceMetric

To create a new metric for TraceFitter, you have to inherit from TraceMetric and overwrite the
get_features and/or get_errors method. The model traces for the get_ features function are provided
as a 3-dimensional ndarray of shape (n_samples, n_traces, time steps), where n_samples are the
number of different parameter sets that have been evaluated, and n_traces the number of different stimuli that
have been evaluated for each parameter set. The output of the function has to take the shape of (n_samples,
n_traces). This array is the input to the get__errors method (see above).

class NewTraceMetric (TraceMetric):
def get_features(self, model_traces, data_traces, dt):

def get_errors(self, features):

2.3. Metric 35

https://efel.readthedocs.io/en/latest/eFeatures.html
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

brian2modelfitting, Release 0.4+git

SpikeMetric

To create a new metric for SpikeFitter, you have to inherit from SpikeMetric. Inputs of the metric in
get_rfeatures are a nested list structure for the spikes generated by the model: a list where each element con-
tains the results for a single parameter set. Each of these results is a list for each of the input traces, where the elements
of this list are numpy arrays of spike times (without units, i.e. in seconds). For example, if two parameters sets and 3
different input stimuli were tested, this structure could look like this:

[
[array ([0.01, 0.5]), array([]l), array([])],
[array ([0.02]), array([]), array([])]

This means that the both parameter sets only generate spikes for the first input stimulus, but the first parameter sets
generates two while the second generates only a single one.

The target spikes are represented in the same way as a list of spike times for each input stimulus. The results of the
function have to be returned as in TraceMetric,i.e. as a 2-d array of shape (n_samples, n_traces).

2.4 Inferencer

Unlike more traditional inverse identification procedures that rely either on gradient or gradient-free methods, the
Inferencer class supports simulation-based inference that has been established as a powerful alternative approach.

The simulation-based inference is data-driven procedure supported by the sbi, Py Torch-based toolbox by Macke lab,
[Tejero-Cantero2020].

In general, this method yields twofold improvement over point-estimate fitting procedures:

1. Simulation-based inference acts as if the actual statistical inference is performed, even in cases of extremly com-
plex models with untractable likelihood function. Thus, instead of returning a single set of optimal parameters,
it results in the approximated posterior distribution over unknown parameters. This is achieved by training a
neural density estimator, details of which will be explained in depth later in the documentation.

2. Simulation-based inference uses prior system knowledge sparsely, using only the most important features to
identify mechanistic models that are consistent with the recordings. This is achieved either by providing the
predifend set of features, or by automatically extraciting summary features by using deep neural networks which
is trained in parallel with neural density estimator.

The Inferencer class, in its core, is a fancy wrapper around the sbi package, where the focus is put on inferring
the unknown parameters of the single-cell neuron models defined in Brian 2 simulator.

2.4.1 Neural density estimator
There are three main estimation techniques supported in sbi that the user can take the full control over seamlesly by
using the Tnferencer:

1. sequential neural posterior estimation (SNPE)

2. sequential neural likelihood estimation (SNLE)

3. sequential neural ratio estimator (SNRE)

36 Chapter 2. Contents

https://www.mackelab.org/sbi/

brian2modelfitting, Release 0.4+git

2.4.2 Simulation-based inference workflow

The inferencer procedure is defined via three main steps:

1.

step. Prior over unknown parameters needs to be defined, where the simplest choice would be uni-
form distribution given lower and upper bound (currently, this is only prior distribution supported through
brian2modelfitting toolbox). After that, simulated data are generated given a mechanistic model with
unknown parameters set as constants. Instead of taking the full output of the model, the neural network takes in
summary data statistics of the output, e.g. instead of voltage trace as the output from a neuron model, we would
feed a neural network with relevant electrophysiology features that outline the gist of the output sufficiently
well.

step. A neural network learns association between the summary data statistics and unknown parameters (given
the prior distribution over parameters). The learning method is heavily dependent on the choice of the inference
technique.

step. The trained neural network is applied to the empirical data to infer posterior distribution over unknown
parameters. Optionally, this process can be repeated by using the trained posterior distribution over parameters
as the prior distribution proposal for a refined optimization.

2.4.3 Implementation

Go to the tutorial section for the in-depth implementation analysis.

2.4.4 References

2.5 Advanced Features

This part of documentation lists other features provided alongside or inside Fitter and Tnferencer objects to
allow users easier and a more flexible development when working on their own problems.

* Parameters initialization

* Restart

* Multi-objective optimization

* Callback function

* OnlineTraceFitter

* Reference the target values in the equations
* Generate Traces

* Results

* Posterior distribution analysis

» Standalone mode

* Embedding network for automatic feature extraction

* GPU usage for inference

2.5.

Advanced Features 37

brian2modelfitting, Release 0.4+git

2.5.1 Parameters initialization

Whilst running Fitter or Inferencer, the user is able to pass the values of the parameters and variables that will
be used as initial conditions when solving the differential equations defined in the neuron model.

Initial conditions should be passed by using an additional dictionary to the constructor:

init_conds = {'v': -30+mV}

’fitter = TraceFitter (..., param_init = init_conds)
or

inferencer = Inferencer (..., param_init=init_conds)

2.5.2 Restart

By default any Fitter object works in continuous optimization mode between run, where all of the parameters
drawn are being evaluated.

By setting the restart argument in it () to True, the user can restart the optimizer and the optimization will
start from scratch.

Used by Fitter optimizer and metric can only be changed when the flat is True.

The previously outlined restart argument is used in the similar fashion in infer () method. Itis set to False by
default, and each following re-call of the method will result in the multi-round inference. If the user wants amortized
inference without using any knowledge from the previous round of optimization instead, the restart argument
should be set to True.

2.5.3 Multi-objective optimization

In the case of Fitter classes, it is possible to fit more than one output variable at the same time by combining the
errors for each variable. To do so, the user can specify several output variables during the initialization as follows:

fitter = TraceFitter(...,
output={'x': target_x,
'v': target_y})

If the fitter function uses a single metric, it is applied to both variables.

Note: This approach requires that the resulting error has the same units for all variables, i.e., it would not be possible
to use the same MSEMet ric on variables with different units, since the errors cannot be simply added up.

As a more general solution, the user can specify a metric for each variable and utilize their normalization arguments to
make the units compatible (most commonly by turning both errors into dimensionless quantities). The normalization
also defines the relative weights of all errors. For example, if the variable x has dimensions of mV and the variable y
is dimensionless, the following metrics can be used to make an error of 10 mV in x to be weighed as much as an error
of 0.1iny

metrics = {'x': MSEMetric (normalization=10+mV),
'y': MSEMetric (normalization=0.1)}

38 Chapter 2. Contents

brian2modelfitting, Release 0.4+git

This has to be passed as the met ric argument of the £it function.

In the case of the Tnferencer class, switching from a single- to multi-objective optimization is seamless. The user
has to provide multiple output variables during the initialization process the same way as for F'i t t er classes:

inferencer = Inferencer(...,
output={'x': target_x,
'v': target_vy})

Later, during the inference process, the user has to define feautres for each output variable as follows:

posterior = inferencer.infer (...,
features={'"'x"': list_of_features_for_x,
'yv': list_of_features_for_y})

If the user prefers automatic feature extraction, the features argument should not be defined (it should stay set to
None).

Warning: If the user chooses to define a list of features for extracting the summary features, it is important to
keep in mind that the total number of features will be increased as many times as there are output variables set for
multi-objective optimization.

2.5.4 Callback function

To visualize the progress of the optimization we provided few possibilities of the feedback inside the Fitter.
The ‘callback’ input provides few default options, updated in each round:

e 'text' (default) - prints out the parameters of the best fit and corresponding error;

* 'progressbar' -uses tgdm.autonotebook to provide a progress bar;

¢ None - non-verbose;

as well as customized feedback option. User can provide a callable (i.e., a function), that ensures either returning an
output or printout. If callback returns True, the fitting execution will be interrupted.

User gets four arguments to customize over:
* params - set of parameters from current round;
e errors - set of errors from current round;
* best_params - best parameters globally, from all rounds;
* best_error - best parameters globally, from all rounds;
¢ index - index of current round.

An example callback function:

def callback_fun(params, errors, best_params, best_error, index):
print ('index errors minimum: ' . format (index, min(errors)))

fitter = TraceFitter(...)
result, error = fitter.fit (..., callback=callback_fun)

2.5. Advanced Features 39

brian2modelfitting, Release 0.4+git

2.5.5 OnlineTraceFitter

OnlineTraceFitter was created to work with long traces or large-scale optimization problems. This Fitter
class uses online mean square error as a metric. When the 77 ¢ () method is called there is no need of specifying a
metric, which is by default set to None. The errors are instead calculated with run_regularly for each simulation.

fitter = OnlineTraceFitter (model=model,

input={'I': inp_traces},
output={'v': out_traces},
dt=0.1l*ms,

n_samples=5)

result, error = fitter.fit (optimizer=optimizer,

n_rounds=1,

gl=[le-8xsiemens*cmx*-2 x area, le-3*siemens*cmx*—2 x*
—areal)

2.5.6 Reference the target values in the equations

A model can refer to the target output values within the equations. For example, if the membrane potential trace v (i.e.
output_var="'v") is used for the optimization, equations can refer to the target trace as v_target. This allows
adding a coupling term such as: coupling* (v_target - wv) to the equation that corresponds to state variable
v, pulling the trajectory towards the correct solution.

2.5.7 Generate Traces

Fitter and Inferencer classes allow the user can to generate the traces with optimized parameters.
For a quick access to best fitted set of parameters F'i t ter classes provide ready to use functions:

* generate_tracesinside TraceFitter;

e generate_spikesinside SpikeFitter.

These functions can be called after the fitting procedure is finalized in the following manner, without any input argu-
ments:

fitter = TraceFitter(...)
results, error = fitter.fit(...)
traces = fitter.generate_traces()
fitter = SpikeFitter(...)
results, error = fitter.fit(...)
spikes = fitter.generate_spikes/()

On the other hand, since the Tnferencer class is able to perform the inference of the unknown parameter distribu-
tion by utilizing output traces and spike trains simultaneously, generate_traces is used for both.

Once the approximated posterior distribution is built, the user is allowed to call generate_traces on
Inferencer object. If only one output variable is used for the optimization of the parameters, the user does not have
to specifiy output variable in the generate_traces method through output_var argument. If, for example, the
multi-objective optimization is performed by using both output traces and spike trains and the user is interested in only
times of spike events, output_var should be set to ' spike'. Otherwise, if the user specifies a list of names or the
output_var is not specified, a dictionary with keys set to output variable names and with their respective values,
will be returned instead.

40 Chapter 2. Contents

https://brian2.readthedocs.io/en/stable/reference/brian2.groups.group.Group.html#brian2.groups.group.Group.run_regularly

brian2modelfitting, Release 0.4+git

Customize the generate method for Fitter

To create traces for other parameters, or generate traces after the spike train fitting, user can call the generate
method, which takes in the following arguments:

fitter.generate (params=..., output_var=..., param_init=..., level=0)

where params should be a dictionary of parameters for which we generate the traces; output_var provides an
option to pick one or more variables for visualization; with param_init, the user is able to define the initial values
for differential equations in the model; and 1evel allows for specification of the namespace level from which we are
able to get the constant parameters of the model.

If output_var is the name of a single variable name (or the special name 'spikes"'), a single Quantity (for
variables) or a list of spikes time arrays (for ' spikes ') will be returned. If a list of names is provided, then the result
is a dictionary with all the results.

fitter = TraceFitter(...)

results, error = fitter.fit(...)

traces = fitter.generate (output_var=['v', 'h', 'n', 'm'])
v_trace = traces['v']

h_trace = traces['h']

2.5.8 Results

Fitter classes store all of the parameters used by the optimizer as well as the corresponding errors. To retrieve them
you can call the results.

fitter = TraceFitter(...)

traces = fitter.generate_traces()

fitter = SpikeFitter(...)

results = fitter.results(format='dataframe')

Results can be returned in one of the following formats:
e 'list' (default) - returns a list of dictionaries with corresponding parameters (including units) and errors;
e 'dict' -returns a dictionary of arrays with corresponding parameters (including units) and errors;
* 'dataframe' -returns a DataF rame (without units).

The use of units (only relevant for formats '1ist ' and 'dict ') can be switched on or off with the use_units
argument. If it is not specified, it will default to the value used during the initialization of the Fitter (which itself
defaults to True).

Example output:

e format="list"':

[{'gl': 80.63365773 % nsiemens, 'g_kd': 66.00430921 * usiemens, 'g_na': 145.15634566
—+* usiemens, 'errors': 0.00019059452295872703},
{'gl': 83.29319947 x nsiemens, 'g_kd': 168.75187749 % usiemens, 'g_na': 130.64547027_
—* usiemens, 'errors': 0.00021434415430605653},

-]

2.5. Advanced Features 41

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame

brian2modelfitting, Release 0.4+git

e format="dict"':

{'g_na': array([176.4472297 , 212.57019659, ...]) % usiemens,
'g_kd': array ([43.82344525, 54.35309635, ...]) * usiemens,
'gl': array ([69.23559876, 134.68463669, ...]) * nsiemens,
'errors': array([1.16788502, 0.5253008 , ...1)}

e format="'dataframe':

g_na gl g_kd errors
0 0.000280 8.870238e-08 0.000047 0.521425
1 0.000192 1.121861e-07 0.000118 0.387140

2.5.9 Posterior distribution analysis

Unlike Fitter classes, the Tnferencer class does not keep track of all parameter values. Rather, it stores all
training data for neural density estimator which will later be used for building the posterior distribution of each un-
known parameter. Thus, the Inferencer does not returns best-fit values and corresponding errors, but the entire
posterior distribution that can be used to draw samples from, compute descriptive statistics of parameters, analyize
pairwise relationship between each to parameters, etc.

There are three methods that enable the comprehensive analysis of the posterior:

* pairplot - returns axes of drawn samples from the posterior in a 2-dimenstional grid with marginals and
pairwise marginals. Using this method, the user is able to inspect the relationship for all combinations of
distributions for each parameter;

* conditional_pairplot - visualizes the conditional pairplot;

e conditional_corrcoeff - returns the correlation matrix of a distribution conditioned with the user-
specified condition.

To see this in action, go to our tutorial page and learn how to use each of these methods.

2.5.10 Standalone mode

Just like with regular Brian 2 scripts, all computations in the toolbox can be performed in Runt ime mode (default)
or Standalone mode. For details, please check the official Brian 2 documentation: https://brian2.readthedocs.io/
en/stable/user/computation.html

To enable the Standalone mode, and to allowthe source code generation to C++ code, add the following code right
after Brian 2 is imported, but before the simulation code:

set_device ('cpp_standalone')

Important notes:

Warning: In the Standalone mode, a single script should not contain multiple Fitter or Inferencer
classes. Please, use separate scripts.

Note that the generation of traces or spikes via generate will always use runtime mode, even when the fitting
procedure uses standalone mode.

42 Chapter 2. Contents

https://brian2.readthedocs.io/en/stable/user/computation.html
https://brian2.readthedocs.io/en/stable/user/computation.html

brian2modelfitting, Release 0.4+git

2.5.11 Embedding network for automatic feature extraction

If the features argument of the Tnferencer class is not defined, automatic feature extraction from the given
output traces will occur. By default, this is done by using the multi-layer perceptron that is trained in parallel with
the neural density estimator of choice during the inference process. If the user wants to specify their own custom
embedding network, it is possible to do so by creating a neural network by using PyTorch library and passing the
instance of that neural network as an additional keyword argument as follows:

import torch
from torch import nn

class CustomEmbeddingNet (nn.Module) :

def _ init_ (self, in_features, out_features, ...):

def forward(self, x):

in_features = out_traces.shape[l]
out__features =
embedding_net = CustomEmbeddingNet (in_features, out_features, ...)
inferencer = Inferencer(...)
inferencer.infer (...,
inference_kwargs={'embedding_net': embedding_net})

2.5.12 GPU usage for inference

It is possible to use the GPU for training the sdensity estimator. It is enough to specify the sbi_device to 'gpu'
or 'cuda'. Otherwise, if not specified, or if set to ' cpu', training will be done by using the CPU.

Note: For default density estimators that are used either for SNPE, SNLE and SNRE, there are no significant speed-
ups expected if the training is translocated to the GPU.

It is, however, possible to achieve a significant speed-up if the custom embedding network relies on convolutions to
extract feautres. Such operations are known to achieve improvement in compuation time multifold.

2.6 Examples

2.6.1 Simple Examples

Following pieces of code show an example of two Fitter class calls and an Inferencer class call with possible
inputs.

2.6. Examples 43

brian2modelfitting, Release 0.4+git

TraceFitter

n_opt = NevergradOptimizer (method='PSO")
metric = MSEMetric ()

fitter = TraceFitter (model=model,
input={'I1': inp_trace},
output={'v': out_trace},

dt=0.1l+ms, n_samples=5
method="'exponential_euler")

results, error = fitter.fit (optimizer=n_opt,
metric=metric,
callback="text",
n_rounds=1,
param_init={'v': -65+xmV},

gl=[10*nS*cmx*x—2 % area, lxmSxcm**—-2 * areal,
g_na=[l mSxcmxx—2 % area, 2000xmS*cmx*x—2 *x areal],
g_kd=[1l+mSxcmxx—2 % area, 1000+xmS*cm**—2 x area])

SpikeFitter

n_opt = SkoptOptimizer ('ET")
metric = GammaFactor (dt, delta=2+*ms)

fitter = SpikeFitter (model=eqgs,

input={'I': inp_traces},
output=out_spikes,
dt=0.1+ms,

n_samples=30,

threshold='v > -50+xmV"',
reset='v = -70xmV"',
method="exponential euler')

results, error = fitter.fit (n_rounds=2,
optimizer=n_opt,
metric=metric,
gL=[20%nS, 40xnS],
C = [0.5#%nF, 1.5%nF])

Inferencer

v_features

lambda x: max(x[(t > t_start) & (t < t_end)]), # AP max
lambda x: mean (x[(t > t_start) & (t < t_end)]), # AP mean
lambda x: std(x[(t > t_start) & (t < t_end)]), # AP std
lambda x: mean(x[(t > .25 % t_start) & (t < .75 %= t_start)]), # resting
]
s_features = [lambda x: x.size] # number of spikes in a spike train
inferencer = Inferencer (model=eqgs, dt=0.1lx*ms,
input={'I': inp_traces},
output={'v': out_traces, 'spike': spike_times},
features={'v': v_features, 'spikes': s_features},

(continues on next page)

44

Chapter 2. Contents

brian2modelfitting, Release 0.4+git

(continued from previous page)

method='exponential_ euler',
threshold='m > 0.5",
refractory="'m > 0.5'",
param_init={'v': 'VTI'})

posterior = inferencer.infer (n_samples=1_000,
n_rounds=2,
inference_method='SNPE',
gL=[20%nS, 40xnS],
C = [0.5%nF, 1.5%nF])

2.6.2 Multirun fitting of Hodgkin-Huxley

Here you can download the data: input_traces output_traces

import numpy as np
from brian2 import x
from brian2modelfitting import =«

To load the data, use following code:

import pandas as pd

Load Input and Output Data

df_inp_traces = pd.read_csv('input_traces_hh.csv")
df_out_traces = pd.read_csv('output_traces_hh.csv")

inp_traces = df_inp_traces.to_numpy ()
inp_traces = inp_traces[:, 1:]
out_traces = df_out_traces.to_numpy ()
out_traces = out_traces[:, 1:]

Then the multiple round optimization can be run with following code:

Model Fitting
Parameters

area = 20000xumetrex«*2
El = -65+mV
EK = -90+mV
ENa = 50*mV
VT = —-63+mV

dt = 0.0l*ms
defaultclock.dt = dt

Modle Definition
egs = Equations(
dv/dt = (gl#*(El1-v) - g_na#*(m#+mx*m)+h+(v-ENa) - g_kd#* (n*n*n#+n)+(v-EK) + I)/Cm : volt
dm/dt = 0.32% (mVx*x—1) % (13.+mV-v+VT)/

(exp ((13.*mV-v+VT)/(4.+mV))—=1.)/ms*(1-m)—=0.28% (mV*x—1)x (v-VT—40.mV) /

(exp ((v=VT-40.+mV)/(5.+mV))-1.)/ms+m : 1
dn/dt = 0.032% (mV**—1) % (15.+mV-v+VT) /

(exp ((15.*mV-v+VT)/(5.+mV))—-1.)/ms*(1.-n)—.5+exp ((10.+mV-v+VT)/(40.+mV))/ms*n : 1
dh/dt = 0.128#exp ((17.+mV-v+VT)/(18.+mV))/ms+(1.-h)-4./(1+exp ((40.+mV-v+VT)/(5.+mV)))/
—ms+h : 1

(continues on next page)

2.6. Examples 45

brian2modelfitting, Release 0.4+git

(continued from previous page)

g_na : siemens (constant)
g_kd : siemens (constant)
gl : siemens (constant)
Cm : farad (constant)

L ')
Optimization and Metric Choice
n_opt = NevergradOptimizer ()

metric = MSEMetric ()

Fitting

fitter = TraceFitter (model=eqgs, input={'I': inp_tracesxamp},
output={'v': out_traces*mV},
dt=dt, n_samples=20, param_init={'v': -65xmV},

method="exponential euler')

res, error = fitter.fit (n_rounds=2,
optimizer=n_opt, metric=metric,
callback="progressbar',

gl = [1e-09 xsiemens, 1le-07 xsiemens],
g_na = [2e-06xsiemens, 2e-04xsiemens],
g_kd = [6e-07+xsiemens, 6e-05xsiemens],

Cm=[0.1lxufarad+cm++x—2 * area, 2+ ufarad+cmx+-2 * areal)

Show results
all output = fitter.results(format='dataframe')
print (all_output)

Second round

res, error = fitter.fit (restart=True,
n_rounds=20,
optimizer=n_opt, metric=metric,
callback="progressbar',

gl = [1e-09 xsiemens, 1le-07 xsiemens],
g_na = [2e-06xsiemens, 2e-04xsiemens],
g_kd = [6e-07*siemens, 6e-05xsiemens],

Cm=[0.1l+xufarad+cm++x-2 % area, 2+ ufarad+cmx+-2 * areal)

To get the results and traces:

Show results
all_output = fitter.results(format='dataframe')
print (all_output)

Visualization of the results
fits = fitter.generate_traces (params=None, param_init={'v': —-65xmV})

fig, axes = plt.subplots(ncols=5, figsize=(20,5), sharey=True)
for ax, data, fit in zip(axes, out_traces, fits):
ax.plot (data.transpose())

ax.plot (fit.transpose () /mV)

plt.show ()

46 Chapter 2. Contents

brian2modelfitting, Release 0.4+git

2.6.3 Inference on Hodgin-Huxley model: simple interface

You can also download and run a similar example available here: hh_sbi_simple_interface.py

Here you can download the data: input traces output traces

from brian2 import x
from brian2modelfitting import =x
import pandas as pd

To load the data, use the following:

df_inp_traces = pd.read_csv('input_traces_hh.csv')
df_out_traces = pd.read_csv ('output_traces_hh.csv")

inp_traces = df_inp_traces.to_numpy ()
inp_traces = inp_traces([[0, 1], 1:]
out_traces = df_out_traces.to_numpy ()
out_traces = out_traces[[0, 1], 1:]

Then we have to define the model and its parameters:

area = 20_000xum=«*2

El = -65xmV

EK = -90+mV

ENa = 50*mV

VT = —-63+mV

dt = 0.01lxms

egqs = '''
dv/dt = (glx (E1-v) - g_nax (mxm*m)+hx* (v-ENa) - g_kd* (n*n*n+n)* (v-EK) + I)/Cm : volt
dm/dt = 0.32% (mV**x—1)* (13.*mV-v+VT) /

(exp ((13.+mV-v+VT)/ (4.xmV))-1.)/ms* (1-m)-0.28* (mV*x*—1) * (v-VT-40.+mV) /
(exp ((v=VT=40.+mV)/ (5.+*mV))-1.) /ms+m : 1
dn/dt = 0.032% (mVx*—1) % (15.*mV-v+VT) /
(exp ((15.*mV-v+VT) /(5.+mV))-1.)/ms* (1.-n)—-.5xexp ((10.+mV-v+VT)/ (40.%mV)) /
—msxn 1
dh/dt = 0.128xexp ((17.+mV-v+VT)/(18.+mV)) /ms* (1.-h)-4./ (1l+exp ((40.+mV-v+VT) /(5.
—*mV)))/msxh : 1

free parameters

g_na : siemens (constant)
g_kd : siemens (constant)
gl : siemens (constant)
Cm : farad (constant)

Let’s also specify time domain for more convenient plotting afterwards:

t = arange (0, out_traces.shape[l]*dt/ms, dt/ms)
stim_start, stim_end = t[where(inp_traces([0, :] != 0)[0][[0, -111]

Now, we have to define features in order to create a summary statistics representation of the output data traces:

list_of_features = [

lambda x: max(x[(t > stim_start) & (t < stim_end)]), # max active potential
lambda x: mean(x[(t > stim_start) & (t < stim_end)]), # mean active potential
lambda x: std(x[(t > stim_start) & (t < stim_end)]), # std active potential
lambda x: mean(x[(t > .25 * stim_start) & (t < .75 % stim_start)]), # resting

2.6. Examples a7

brian2modelfitting, Release 0.4+git

We have to instantiate the object by using the class Inferencer in which the data and the list of features should be
passed:

inferencer = Inferencer (dt=dt, model=egs,
input={'I': inp_tracesxamp},
output={'v': out_tracesxmV},
features={'v': list_of_features},
method='exponential_ euler',
threshold='m > 0.5",
refractory="'m > 0.5'",
param_init={'v': 'VT'})

Be sure that the names of parameters passed to the infer method correspond to the names of unknown parameters
defined as constatns in the model equations.

posterior = inferencer.infer (n_samples=5_000,
n_rounds=3,
inference_method='SNPE',
density_estimator_model='mdn',
gl=[le-09+siemens, le-07+siemens],
g_na=[2e-06xsiemens, 2e-04xsiemens],
g_kd=[6e-07+xsiemens, 6e-05xsiemens],
Cm=[0.1lxuF+*cm++—2+area, 2+uF+cmx+-2xareal)

After the training of the neural density estimator stored accessible through posterior is done, we can draw samples
from the approximated posterior distribution as follows:

samples = inferencer.sample ((5_000,))

In order to analyze the sampled data further, we can use the embedded pairplot method which visualizes the
pairwise relationship between each two parameters:

limits = {'gl': [le-9%siemens, le-07*siemens],

'g_ na': [2e-06xsiemens, 2e-04xsiemens],

'g_ kd': [6e-07+xsiemens, 6e-05+«siemens],

'Cm': [0.lxuF+cm**—-2+area, 2+ uF+cmx+-2+area]}
labels = {'gl': r'sS\overline _ s,

'g_na': r'$\overline o s,

'g_kd': r'S$\overline o s,

'Cm': r'S$C_ ST}

inferencer.pairplot (limits=limits,
labels=labels,
ticks=limits,
figsize=(6, 6))
condition = inferencer.sample((1,))
inferencer.conditional_pairplot (condition=condition,
limits=1limits,
labels=labels,
ticks=limits,
figsize=(6, 6))

To obtain a simulated trace from a single sample of parameters drawn from posterior distribution, use the following
code:

inf_traces = inferencer.generate_traces (output_var='v"')

Let us now visualize the recordings and simulated traces:

48 Chapter 2. Contents

brian2modelfitting, Release 0.4+git

inf_traces = inferencer.generate_traces (output_var='v"')
nrows = 2
ncols = out_traces.shape[0]
fig, axs = subplots(nrows, ncols, sharex=True,
gridspec_kw={'height_ratios': [3, 1]}, figsize=(9, 3))
for idx in range(ncols):
spike_idx = inld(t, spike_times[idx]) .nonzero () [0]
spike_v = (out_traces[idx, :].min(), out_traces[idx, :].max())
axs[0, idx].plot(t, out_traces[idx, :]1.T, 'C3-', lw=3, label='recordings')
axs[0, idx].plot(t, inf_traces[idx, :]1.T/mV, 'k-——', 1lw=2,
label="'sampled traces')

axs[1l, idx].plot(t, inp_traces[idx, :].T/nA, lw=3, c='k', label='stimuli')
axs[1l, idx].set_xlabel('St, ms')
if idx == 0:
axs[0, idx].set_ylabel ('SVS$, mV'")
axs[1l, 1dx].set_ylabel ('SIS$, nA'")
handles, labels = [(h + 1) for h, 1
in zip(axs[0, idx].get_legend_handles_labels(),
axs[1l, idx].get_legend_handles_labels())]
fig.legend (handles, labels)
tight_layout ()
show ()

2.6.4 Inference on Hodgin-Huxley model: flexible interface

You can also download and run this example by clicking here: hh_sbi_simple_interface.py

Here you can download the data: input traces output traces

from brian2 import x
from brian2modelfitting import =~
import pandas as pd

To load the data, use the following:

df_inp_traces = pd.read_csv('input_traces_hh.csv")
df_out_traces = pd.read_csv ('output_traces_hh.csv")

inp_traces = df_inp_traces.to_numpy ()
inp_traces = inp_traces[[0, 1, 31, 1:]
out_traces = df_out_traces.to_numpy ()
out_traces = out_traces[[0, 1, 3], 1:]

The model used for this example is the Hodgkin-Huxley neuron model. The parameters of the model are defined as
follows:

area = 20_000xum==*2
El = —-65+mV

EK = -90+mV

ENa = 50*mV

VT = —-63+mV

dt = 0.0l*ms

egqs = '''

dv/dt = (gl*x (E1l-v) - g_nax (mxm*m)«h* (v-ENa) - g_kd* (n*n*nxn)* (v-EK) + I)/Cm : volt

dm/dt = 0.32%x (mVx%x—1) % (13.*mV-v+VT) /
(exp ((13.+mV-v+VT)/ (4.+mV))-1.)/ms* (1-m)—-0.28* (mV*x—1)* (v=VT—-40.+mV) /

(continues on next page)

2.6. Examples 49

brian2modelfitting, Release 0.4+git

(continued from previous page)

(exp ((v=VT=40.+mV)/ (5.*mV))-1.) /ms+m : 1
dn/dt = 0.032x (mVx*x—1) % (15.*xmV-v+VT) /
(exp ((15.+mV-v+VT) /(5.*xmV))-1.)/ms* (1.-n)—-.5xexp ((10.+mV-v+VT)/ (40.%mV)) /
—msxn @ 1
dh/dt = 0.128%exp ((17.+mV-v+VT)/ (18.+mV)) /ms* (1.-h)-4./ (1l+exp ((40.+mV-v+VT) /(5.
—*mV)))/msxh : 1

unknown parameters

g_na : siemens (constant)
g_kd : siemens (constant)
gl : siemens (constant)
Cm : farad (constant)

Now, let’s define the time domain and start with the inferencer procedure manually:

t = arange (0, out_traces.shape[l]*dt/ms, dt/ms)
t_start, t_end = t[where(inp_traces[0, :] != 0)[0]1[[0, —-1]11]

Start with the regular instatiation of the class

inferencer = Inferencer (dt=dt, model=egs,
input={'I': inp_tracesxamp},
output={'v': out_tracesxmV},
features={'v': [lambda x: max (x),
lambda x: mean(x[(t > t_start) & (t < t_
—end)]),
lambda x: std(x[(t > t_start) & (t < t_
—end)]) 1},

method='exponential_ euler',
threshold='m > 0.5'",
refractory="'m > 0.5'",
param_init={'v': 'VT'})

The prior should be initialized by defining the upper and lower bounds for each unknown parameter:

prior = inferencer.init_prior(gl=[le-09+siemens, le-07xsiemens],
g_na=[2e-06xsiemens, 2e-04xsiemens],
g_kd=[6e-07+*siemens, 6e-05xsiemens],
Cm=[0.1l+xuF+cm*+—2+area, 2+ uF+cm**—-2+areal)

If the input and output data for the training of the neural density estimator already exists, we can load it as follows:

path_to_data =
theta, x = inferencer.load_summary_statistics (path_to_data)

Otherwise, we have to generate training data and summary statistics from a given list of features:

theta = inferencer.generate_training data (n_samples=10_000,
prior=prior)
x = inferencer.extract_summary_statistics (theta)

And the data can be saved for the later use:

inferencer.save_summary_statistics (path_to_data, theta, x)

Finally, let’s get our hands dirty and let’s perform a single step of inference:

50 Chapter 2. Contents

brian2modelfitting, Release 0.4+git

amortized inference
inference = inferencer.init_inference (inference_method='SNPE',
density_estimator_model='mdn',
prior=prior)
first round of inference where no observation data is set to posterior
posterior_amortized = inferencer.infer_step (proposal=prior,
inference=inference,
theta=theta, x=x)

After the posterior has been built, it can be stored as follows:

storing the trained posterior without a default observation
path_to_posterior =
inferencer.save_posterior (path_to_posterior)

Now, as in the simple interface example, sampling can be performed via sample method where it is enough to define
a number of parameters to be drawn from the posterior:

inferencer.sample ((10_000,))

Creating the pairwise relationship visualizations using the approximated posterior distribution

define the label for each parameter

labels = {'gl': r'S\overline _\mathrm s,
'g_na': r'S$\overline _\mathrm s,
'g_kd': r'S\overline _\mathrm S,
'Cm': r'S$\overline _ S'}

inferencer.pairplot (labels=labels)

It is possible to continue with the focused inference (to draw parameters from the posterior and to perform the training
of a neural network to estimate the posterior distribution by focusing on a particular observation) by using a standard
approach through infer method:

posterior_focused = inferencer.infer ()

For every future call of inferencer, the last trained posterior will be used by default, e.g., when generating traces
by using a single sample of parameters from a now non-amortized approximated posterior distribution:

inf_traces = inferencer.generate_traces ()

nrows = 2

ncols = out_traces.shape[0]

fig, axs = subplots(nrows, ncols, sharex=True,
gridspec_kw={"'height_ratios': [3, 1]},

figsize=(ncols = 3, 3))
for idx in range (ncols):

axs [0, idx].plot(t, out_traces[idx, :].T, 'C3-', 1lw=3, label='recordings')
axs[0, idx].plot(t, inf_traces[idx, :].T/mv, 'k——', lw=2,

label="sampled traces')
axs[1l, idx].plot(t, inp_traces[idx, :].T/nA, lw=3, c='k', label='stimuli')
axs[1l, idx].set_xlabel('SSt, ms'")
if idx ==

axs[0, idx].set_ylabel ('SVS, mV'")
axs[l, idx].set_ylabel ('S$SIS, nA')
handles, labels = [(h + 1) for h, 1
in zip(axs[0, idx].get_legend_handles_labels(),
axs[l, idx].get_legend_handles_labels())]
fig.legend (handles, labels)

(continues on next page)

2.6. Examples 51

brian2modelfitting, Release 0.4+git

(continued from previous page)

tight_layout ()
show ()

52 Chapter 2. Contents

CHAPTER 3

API reference

3.1 brian2modelfitting package

3.1.1 Subpackages and -modules

brian2modelfitting.fitter module

class brian2modelfitting.fitter.Fitter (df, model, input, output, n_samples, in-
put_var=None, output_var=None, threshold=None,
reset=None, refractory=None, =~ method=None,

param_init=None, penalty=None, use_units=True)
Bases: object

Base Fitter class for model fitting applications.

Creates an interface for model fitting of traces with parameters draw by gradient-free algorithms (through ask/tell
interfaces).

Initiates n_neurons = num input traces * num samples, to which drawn parameters get assigned and evaluates
them in parallel.

Parameters
e dt (Quantity) — The size of the time step.
* model (Equations or str) — The equations describing the model.

* input (dic, ndarray or Quantity) — A dictionary given the input variable as the key
and a 2D array of shape (n_traces, time steps) as the value, defining the input
that will be fed into the model. Note that this variable should be used in the model (e.g. a
variable I that is added as a current in the membrane potential equation), but not defined.

* output (dict, Quantity or list) — Recorded output of the model that the model should
reproduce. Should be given as a dictionary with the name of the variable as the key and the
desired output as the value. The desired output has to be a 2D array of the same shape as
the input when fitting traces with TraceFitter, or a list of spike times when fitting spike

53

https://docs.python.org/3/library/functions.html#object
https://brian2.readthedocs.io/en/stable/reference/brian2.units.fundamentalunits.Quantity.html#brian2.units.fundamentalunits.Quantity
https://brian2.readthedocs.io/en/stable/reference/brian2.equations.equations.Equations.html#brian2.equations.equations.Equations
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://brian2.readthedocs.io/en/stable/reference/brian2.units.fundamentalunits.Quantity.html#brian2.units.fundamentalunits.Quantity
https://brian2.readthedocs.io/en/stable/reference/brian2.units.fundamentalunits.Quantity.html#brian2.units.fundamentalunits.Quantity

brian2modelfitting, Release 0.4+git

trains with SpikeFitter. Can also be a list of several output 2D arrays or a single output
array if combined with output_var (deprecated use).

* input_var (str)— The name of the input variable in the model. Note that this variable
should be used in the model (e.g. a variable I that is added as a current in the membrane
potential equation), but not defined. .. deprecated:: 0.5

Use a dictionary for input instead.

* output_var (str or list of str)-The name of the output variable in the model
or a list of output variables. Only needed when fitting traces with TraceFitter.
deprecated:: 0.5

Use a dictionary for output instead.

* n_samples (int)— Number of parameter samples to be optimized over in a single itera-
tion.

* threshold (str, optional) — The condition which produces spikes. Should be a boolean
expression as a string.

* reset (str, optional) — The (possibly multi-line) string with the code to execute on reset.

* refractory (str or Quantity, optional) — Either the length of the refractory period
(e.g. 2*ms), a string expression that evaluates to the length of the refractory period after each
spike (e.g. ‘(1 + rand())*ms’), or a string expression evaluating to a boolean value, given
the condition under which the neuron stays refractory after a spike (e.g. ‘v>-20*mV’)

* method (str, optional) — Integration method

* penalty (str, optional)— The name of a variable or subexpression in the model
that will be added to the error at the end of each iteration. Note that only the term at the end
of the simulation is taken into account, so this term should not be varying in time.

* param_init (dict, optional) — Dictionary of variables to be initialized with respective
values

best_error

best_objective_errors
best_objective_errors_normalized
best_params

calc_errors (metric)
Abstract method required in all Fitter classes, used for calculating errors

Parameters metric (et ric children) — Child of Metric class, specifies optimization metric

fit (optimizer, metric=None, n_rounds=1, callback="text’, restart=False, online_error=False,

start_iteration=None, penalty=None, level=0, **params)
Run the optimization algorithm for given amount of rounds with given number of samples drawn. Return

best set of parameters and corresponding error.
Parameters
* optimizer (Optimizer children) — Child of Optimizer class, specific for each library.

* metric (Metric, or dict) — Child of Metric class, specifies optimization metric. In the
case of multiple fitted output variables, can either be a single Met ric that is applied to
all variables, or a dictionary with a Met ric for each variable.

* n_rounds (int) — Number of rounds to optimize over (feedback provided over each
round).

54 Chapter 3. API reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://brian2.readthedocs.io/en/stable/reference/brian2.units.fundamentalunits.Quantity.html#brian2.units.fundamentalunits.Quantity
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int

brian2modelfitting, Release 0.4+git

* callback (str or Callable) — FEither the name of a provided call-
back function (text or progressbar), or a custom feedback function
func (parameters, errors, best_parameters, best_error,
index, additional_info). If this function returns True the fitting execu-
tion is interrupted.

* restart (bool)— Flag that reinitializes the Fitter to reset the optimization. With restart
True user is allowed to change optimizer/metric.

* online_error (bool, optional) — Whether to calculate the squared error be-
tween target trace and simulated trace online. Defaults to False.

e start_iteration (int, optional) — A value for the iteration variable at
the first iteration. If not given, will use O for the first call of £it (and for later calls when
restart is specified). Later calls will continue to increase the value from the previous
calls.

* penalty (str, optional) - The name of a variable or subexpression in the model
that will be added to the error at the end of each iteration. Note that only the term at the
end of the simulation is taken into account, so this term should not be varying in time. If
not given, will reuse the value specified during Fitter initialization.

* level (int, optional) — How much farther to go down in the stack to find the namespace.
* xxparams — bounds for each parameter
Returns
* best_results (dict) — dictionary with best parameter set
* error (float) — error value for best parameter set

generate (output_var=None, params=None, param_init=None, iteration=1000000000.0, level=0)
Generates traces for best fit of parameters and all inputs. If provided with other parameters provides those.

Parameters

* output_var (str or sequence of str)— Name of the output variable to be
monitored, or the special name spikes to record spikes. Can also be a sequence of
names to record multiple variables.

* params (dict)— Dictionary of parameters to generate fits for.
e param_init (dict) - Dictionary of initial values for the model.

e iteration (int, optional)— Value for the iteration variable provided to the
simulation. Defaults to a high value (1€9). This is based on the assumption that the
model implements some coupling of the fitted variable to the target variable, and that this
coupling inversely depends on the iteration number. In this case, one would usually want
to switch off the coupling when generating traces/spikes for given parameters.

* level (int, optional) — How much farther to go down in the stack to find the namespace.

Returns Either a 2D Quant ity with the recorded output variable over time, with shape <num-
ber of input traces> x <number of time steps>, or a list of spike times for each input trace. If
several names were given as output_var, then the result is a dictionary with the names of
the variable as the key.

Return type fit

n_neurons

3.1. brian2modelfitting package 55

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

brian2modelfitting, Release 0.4+git

optimization_iter (optimizer, metric, penalty)
Function performs all operations required for one iteration of optimization. Drawing parameters, setting
them to simulator and calulating the error.

Parameters
* optimizer (Optimizer)—
e metric (Metric)—

* penalty (str, optional)— The name of a variable or subexpression in the model
that will be added to the error at the end of each iteration. Note that only the term at the
end of the simulation is taken into account, so this term should not be varying in time.

Returns
e results (/ist) — recommended parameters
* parameters (/ist of list) — drawn parameters
e errors (list) — calculated errors

results (format="list’, use_units=None)
Returns all of the gathered results (parameters and errors). In one of the 3 formats: ‘dataframe’, ‘list’,
‘dict’.
Parameters

e format (str)— The desired output format. Currently supported: dataframe, 1ist,
ordict.
* use_units (bool, optional)— Whether to use units in the results. If not speci-

fied, defaults to Tracefitter.use_units, i.e. the value that was specified when the
Tracefitter object was created (True by default).

Returns ‘dataframe’: returns pandas Dat aF rame without units ‘list’: list of dictionaries ‘dict’:
dictionary of lists

Return type object

setup_neuron_group (n_neurons, namespace, calc_gradient=False, optimize=True, on-

_ line_error=False, name="neurons’) o
Setup neuron group, initialize required number of neurons, create namespace and initialize the parameters.

Parameters
* n_neurons (int)—number of required neurons
* xx*namespace — arguments to be added to NeuronGroup namespace
Returns neurons — group of neurons
Return type NeuronGroup
setup_simulator (network_name, n_neurons, output_var, param_init, calc_gradient=False, opti-
mize=True, online_error=False, level=1)

class brian2modelfitting.fitter.OnlineTraceFitter (model, input_var, input, out-
put_var, output, dt, n_samples=30,
method=None, reset=None, re-
fractory=False, threshold=None,
param_init=None, t_start=0. *
second, penalty=None)
Bases: brianZmodelfitting. fitter.Fitter

best_error

56 Chapter 3. API reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#int
https://brian2.readthedocs.io/en/stable/reference/brian2.groups.neurongroup.NeuronGroup.html#brian2.groups.neurongroup.NeuronGroup

brian2modelfitting, Release 0.4+git

best_objective_errors

best_objective_errors_normalized

best_params

calc_errors (metric=None)
Calculates error in online fashion.To be used inside optim_iter.

fit (optimizer,

n_rounds=1, callback="text’, restart=False, start_iteration=None, penalty=None,

level=0, **params)
Run the optimization algorithm for given amount of rounds with given number of samples drawn. Return

best set of parameters and corresponding error.

Parameters

optimizer (Optimizer children)— Child of Optimizer class, specific for each library.

metric (Metric, or dict) — Child of Metric class, specifies optimization metric. In the
case of multiple fitted output variables, can either be a single Met ric that is applied to
all variables, or a dictionary with a Met ri c for each variable.

n_rounds (int) — Number of rounds to optimize over (feedback provided over each
round).

callback (str or Callable) — Either the name of a provided -call-
back function (text or progressbar), or a custom feedback function
func (parameters, errors, best_parameters, best_error,

index, additional_info). If this function returns True the fitting execu-
tion is interrupted.

restart (bool) - Flag that reinitializes the Fitter to reset the optimization. With restart
True user is allowed to change optimizer/metric.

online_error (bool, optional) — Whether to calculate the squared error be-
tween target trace and simulated trace online. Defaults to False.

start_iteration (int, optional) — A value for the iteration variable at
the first iteration. If not given, will use O for the first call of £it (and for later calls when
restart is specified). Later calls will continue to increase the value from the previous
calls.

penalty (str, optional)- The name of a variable or subexpression in the model
that will be added to the error at the end of each iteration. Note that only the term at the
end of the simulation is taken into account, so this term should not be varying in time. If
not given, will reuse the value specified during Fitter initialization.

level (int, optional) — How much farther to go down in the stack to find the namespace.

**params — bounds for each parameter

Returns

best_results (dict) — dictionary with best parameter set

error (float) — error value for best parameter set

generate (output_var=None, params=None, param_init=None, iteration=1000000000.0, level=0)
Generates traces for best fit of parameters and all inputs. If provided with other parameters provides those.

Parameters

output_var (str or sequence of str) - Name of the output variable to be
monitored, or the special name spikes to record spikes. Can also be a sequence of
names to record multiple variables.

3.1. brian2modelfitting package

57

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

brian2modelfitting, Release 0.4+git

* params (dict)— Dictionary of parameters to generate fits for.
e param_init (dict) - Dictionary of initial values for the model.

* iteration (int, optional)- Value for the iteration variable provided to the
simulation. Defaults to a high value (1e€9). This is based on the assumption that the
model implements some coupling of the fitted variable to the target variable, and that this
coupling inversely depends on the iteration number. In this case, one would usually want
to switch off the coupling when generating traces/spikes for given parameters.

* level (int, optional) — How much farther to go down in the stack to find the namespace.

Returns FEither a 2D Quant ity with the recorded output variable over time, with shape <num-
ber of input traces> x <number of time steps>, or a list of spike times for each input trace. If
several names were given as output_var, then the result is a dictionary with the names of
the variable as the key.

Return type fit

generate_traces (params=None, param_init=None, level=0)
Generates traces for best fit of parameters and all inputs

n_neurons

optimization_iter (optimizer, metric, penalty)
Function performs all operations required for one iteration of optimization. Drawing parameters, setting
them to simulator and calulating the error.

Parameters
* optimizer (Optimizer)—
* metric (Metric)-—

* penalty (str, optional)- The name of a variable or subexpression in the model
that will be added to the error at the end of each iteration. Note that only the term at the
end of the simulation is taken into account, so this term should not be varying in time.

Returns
e results (/ist) — recommended parameters
» parameters (/ist of list) — drawn parameters
 errors (list) — calculated errors

results (format="list’, use_units=None)
Returns all of the gathered results (parameters and errors). In one of the 3 formats: ‘dataframe’, ‘list’,
‘dict’.
Parameters

* format (str) — The desired output format. Currently supported: dataframe, 1ist,
ordict.

* use_units (bool, optional)— Whether to use units in the results. If not speci-
fied, defaults to Tracefitter.use_units,i.e. the value that was specified when the
Tracefitter object was created (True by default).

Returns ‘dataframe’: returns pandas Dat aF rame without units ‘list’: list of dictionaries ‘dict’:
dictionary of lists

Return type object

58 Chapter 3. API reference

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/functions.html#object

brian2modelfitting, Release 0.4+git

setup_neuron_group (n_neurons, namespace, calc_gradient=False, optimize=True, on-

line_error=False, name="neurons’)
Setup neuron group, initialize required number of neurons, create namespace and initialize the parameters.

Parameters

* n_neurons (int)—number of required neurons

* xx*namespace — arguments to be added to NeuronGroup namespace
Returns neurons — group of neurons
Return type NeuronGroup

setup_simulator (network_name, n_neurons, output_var, param_init, calc_gradient=False, opti-
mize=True, online_error=False, level=1)

class brianZ2modelfitting.fitter.SpikeFitter (model, input, output, dt, reset,

threshold, input_var="I, refrac-
tory=False, n_samples=30, method=None,
param_init=None, penalty=None,

use_units=True)
Bases: brianZmodelfitting.fitter.Fitter

best_error

best_objective_errors
best_objective_errors_normalized
best_params

calc_errors (metric)
Returns errors after simulation with SpikeMonitor. To be used inside optim_iter.

fit (optimizer, metric=None, n_rounds=1, callback="text’, restart=False, start_iteration=None,

penalty=None, level=0, **params)
Run the optimization algorithm for given amount of rounds with given number of samples drawn. Return

best set of parameters and corresponding error.
Parameters
* optimizer (Optimizer children) — Child of Optimizer class, specific for each library.

* metric (Metric, or dict) — Child of Metric class, specifies optimization metric. In the
case of multiple fitted output variables, can either be a single Met i c that is applied to
all variables, or a dictionary with a Met ric for each variable.

* n_rounds (int) — Number of rounds to optimize over (feedback provided over each
round).

* callback (str or Callable) — Either the name of a provided call-
back function (text or progressbar), or a custom feedback function
func (parameters, errors, best_parameters, best_error,
index, additional_info). If this function returns True the fitting execu-
tion is interrupted.

* restart (bool)—Flag that reinitializes the Fitter to reset the optimization. With restart
True user is allowed to change optimizer/metric.

* online_error (bool, optional) — Whether to calculate the squared error be-
tween target trace and simulated trace online. Defaults to False.

e start_iteration (int, optional) — A value for the iteration variable at
the first iteration. If not given, will use O for the first call of £it (and for later calls when

3.1. brian2modelfitting package 59

https://docs.python.org/3/library/functions.html#int
https://brian2.readthedocs.io/en/stable/reference/brian2.groups.neurongroup.NeuronGroup.html#brian2.groups.neurongroup.NeuronGroup
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

brian2modelfitting, Release 0.4+git

restart is specified). Later calls will continue to increase the value from the previous
calls.

* penalty (str, optional)-— The name of a variable or subexpression in the model
that will be added to the error at the end of each iteration. Note that only the term at the
end of the simulation is taken into account, so this term should not be varying in time. If
not given, will reuse the value specified during Fitter initialization.

e level (int, optional) — How much farther to go down in the stack to find the namespace.
* xxparams — bounds for each parameter
Returns
* best_results (dict) — dictionary with best parameter set
* error (float) — error value for best parameter set

generate (output_var=None, params=None, param_init=None, iteration=1000000000.0, level=0)
Generates traces for best fit of parameters and all inputs. If provided with other parameters provides those.

Parameters

* output_var (str or sequence of str)— Name of the output variable to be
monitored, or the special name spikes to record spikes. Can also be a sequence of
names to record multiple variables.

* params (dict) — Dictionary of parameters to generate fits for.
e param_init (dict) - Dictionary of initial values for the model.

e iteration (int, optional)- Value for the iteration variable provided to the
simulation. Defaults to a high value (1€9). This is based on the assumption that the
model implements some coupling of the fitted variable to the target variable, and that this
coupling inversely depends on the iteration number. In this case, one would usually want
to switch off the coupling when generating traces/spikes for given parameters.

* level (int, optional) — How much farther to go down in the stack to find the namespace.

Returns FEither a 2D Quant ity with the recorded output variable over time, with shape <num-
ber of input traces> x <number of time steps>, or a list of spike times for each input trace. If
several names were given as output_var, then the result is a dictionary with the names of
the variable as the key.

Return type fit

generate_spikes (params=None, param_init=None, iteration=1000000000.0, level=0)
Generates traces for best fit of parameters and all inputs

n_neurons

optimization_iter (optimizer, metric, penalty)
Function performs all operations required for one iteration of optimization. Drawing parameters, setting
them to simulator and calulating the error.

Parameters
* optimizer (Optimizer)-—
* metric (Metric)-—

* penalty (str, optional)- The name of a variable or subexpression in the model
that will be added to the error at the end of each iteration. Note that only the term at the
end of the simulation is taken into account, so this term should not be varying in time.

60 Chapter 3. API reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

brian2modelfitting, Release 0.4+git

Returns
e results (/ist) — recommended parameters
» parameters (list of list) — drawn parameters
e errors (list) — calculated errors

results (format="list’, use_units=None)
Returns all of the gathered results (parameters and errors). In one of the 3 formats: ‘dataframe’, ‘list’,
‘dict’.
Parameters

» format (str) — The desired output format. Currently supported: dataframe, 1ist,
ordict.

* use_units (bool, optional)— Whether to use units in the results. If not speci-
fied, defaults to Tracefitter.use_units, i.e. the value that was specified when the
Tracefitter object was created (True by default).

Returns ‘dataframe’: returns pandas Dat aF rame without units ‘list’: list of dictionaries ‘dict’:
dictionary of lists

Return type object

setup_neuron_group (n_neurons, namespace, calc_gradient=False, optimize=True, on-

line_error=False, name="neurons’)
Setup neuron group, initialize required number of neurons, create namespace and initialize the parameters.

Parameters

* n_neurons (int)—number of required neurons

* xxnamespace — arguments to be added to NeuronGroup namespace
Returns neurons — group of neurons
Return type NeuronGroup

setup_simulator (network_name, n_neurons, output_var, param_init, calc_gradient=False, opti-
mize=True, online_error=Fulse, level=1)

class brian2modelfitting.fitter.TraceFitter (model, input, output, dt, n_samples=60,

input_var=None, output_var=None,
method=None, reset=None, re-
fractory=False, threshold=None,
param_init=None, penalty=None,

use_units=True)
Bases: brianZmodelfitting.fitter.Fitter

A Fitter for fitting recorded traces (e.g. of the membrane potential).
Parameters
* model —
* input_var -
* input -
* output_var —
* output —
. dt —

* n_samples —

3.1. brian2modelfitting package 61

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#int
https://brian2.readthedocs.io/en/stable/reference/brian2.groups.neurongroup.NeuronGroup.html#brian2.groups.neurongroup.NeuronGroup

brian2modelfitting, Release 0.4+git

* method —

* reset —

* refractory -
* threshold -
* param_init -

* use_units (bool, optional) — Whether to use units in all user-facing interfaces,
e.g. in the callback arguments or in the returned parameter dictionary and errors. Defaults
to True.

best_error

best_objective_errors
best_objective_errors_normalized
best_params

calc_errors (metric)
Returns errors after simulation with StateMonitor. To be used inside optim_iter.

fit (optimizer, metric=None, n_rounds=1, callback="text’, restart=False, start_iteration=None,
penalty=None, level=0, **params)
Run the optimization algorithm for given amount of rounds with given number of samples drawn. Return
best set of parameters and corresponding error.

Parameters
* optimizer (Optimizer children) — Child of Optimizer class, specific for each library.

* metric (Metric, or dict) — Child of Metric class, specifies optimization metric. In the
case of multiple fitted output variables, can either be a single Met ric that is applied to
all variables, or a dictionary with a Met ric for each variable.

* n_rounds (int) — Number of rounds to optimize over (feedback provided over each
round).

* callback (str or Callable) — Either the name of a provided -call-
back function (text or progressbar), or a custom feedback function
func (parameters, errors, best_parameters, best_error,
index, additional_info). If this function returns True the fitting execu-
tion is interrupted.

* restart (bool)—Flag that reinitializes the Fitter to reset the optimization. With restart
True user is allowed to change optimizer/metric.

* online_error (bool, optional) — Whether to calculate the squared error be-
tween target trace and simulated trace online. Defaults to False.

e start_iteration (int, optional) — A value for the iteration variable at
the first iteration. If not given, will use O for the first call of £it (and for later calls when
restart is specified). Later calls will continue to increase the value from the previous
calls.

* penalty (str, optional)— The name of a variable or subexpression in the model
that will be added to the error at the end of each iteration. Note that only the term at the
end of the simulation is taken into account, so this term should not be varying in time. If
not given, will reuse the value specified during Fitter initialization.

* level (int, optional) — How much farther to go down in the stack to find the namespace.

62 Chapter 3. API reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

brian2modelfitting, Release 0.4+git

* xxparams — bounds for each parameter

Returns
* best_results (dict) — dictionary with best parameter set
* error (float) — error value for best parameter set

generate (output_var=None, params=None, param_init=None, iteration=1000000000.0, level=0)
Generates traces for best fit of parameters and all inputs. If provided with other parameters provides those.

Parameters

* output_var (str or sequence of str)— Name of the output variable to be
monitored, or the special name spikes to record spikes. Can also be a sequence of
names to record multiple variables.

* params (dict)— Dictionary of parameters to generate fits for.
e param_init (dict) - Dictionary of initial values for the model.

e iteration (int, optional)— Value for the iteration variable provided to the
simulation. Defaults to a high value (1€9). This is based on the assumption that the
model implements some coupling of the fitted variable to the target variable, and that this
coupling inversely depends on the iteration number. In this case, one would usually want
to switch off the coupling when generating traces/spikes for given parameters.

¢ level (int, optional) — How much farther to go down in the stack to find the namespace.

Returns Either a 2D Quant ity with the recorded output variable over time, with shape <num-
ber of input traces> x <number of time steps>, or a list of spike times for each input trace. If
several names were given as output_var, then the result is a dictionary with the names of
the variable as the key.

Return type fit

generate_traces (params=None, param_init=None, iteration=1000000000.0, level=0)
Generates traces for best fit of parameters and all inputs

n_neurons

optimization_iter (optimizer, metric, penalty)
Function performs all operations required for one iteration of optimization. Drawing parameters, setting
them to simulator and calulating the error.

Parameters
* optimizer (Optimizer)—
* metric (Metric)-

e penalty (str, optional)— The name of a variable or subexpression in the model
that will be added to the error at the end of each iteration. Note that only the term at the
end of the simulation is taken into account, so this term should not be varying in time.

Returns
e results (/ist) — recommended parameters
 parameters (list of list) — drawn parameters

e errors (/ist) — calculated errors

3.1.

brian2modelfitting package 63

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

brian2modelfitting, Release 0.4+git

refine (params=None, metric=None, callback="'text’, calc_gradient=False, optimize=True, itera-

tion=1000000000.0, level=0, **kwds)
Refine the fitting results with a sequentially operating minimization algorithm. The least_squares

algorithm from scipy.optimize. Has to be called after i ¢, but a call with n_rounds=0 is enough.
Parameters

e params (dict, optional)— A dictionary with the parameters to use as a starting
point for the refinement. If not given, the best parameters found so far by it will be
used.

* metric (MSEMetric or dict, optional) — Optimization metrics to use. Since the re-
finement only supports mean-squared-error metrics, this is only useful to provide the
t_start/t_weights/normalization values. In the case of multiple fitted output
variables, can either be a single MSEMet ric thatis applied to all variables, or a dictionary
with a MSEMet ric for each variable. If not given, will reuse the metrics of a previous
fit call.

* callback (str or Callable) — Either the name of a provided callback func-
tion (text or progressbar), or a custom feedback function func (parameters,
errors, best_parameters, best_error, index). If this function returns
True the fitting execution is interrupted.

* calc_gradient (bool, optional)— Whether to add “sensitivity variables” to the
equation that track the sensitivity of the equation variables to the parameters. This infor-
mation will be used to pass the local gradient of the error with respect to the parameters to
the optimization function. This can lead to much faster convergence than with an estimated
gradient but comes at the expense of additional computation. Defaults to False.

* optimize (bool, optional)— Whether to remove sensitivity variables from the
equations that do not evolve if initialized to zero (e.g. dS_x_y/dt = -S_x_y/tau
would be removed). This avoids unnecessary computation but will fail in the rare case
that such a sensitivity variable needs to be initialized to a non-zero value. Only taken into
account if calc_gradient is True. Defaults to True.

e iteration (int, optional)— Value for the iteration variable provided to the
simulation. Defaults to a high value (1€9). This is based on the assumption that the
model implements some coupling of the fitted variable to the target variable, and that this
coupling inversely depends on the iteration number. In this case, one would usually want
to switch off the coupling when refining the solution.

* level (int, optional) — How much farther to go down in the stack to find the
namespace.

* kwds — Additional arguments can overwrite the bounds for individual parameters (if not
given, the bounds previously specified in the call to £ t will be used). All other arguments
will be passed on to least_squares.

Returns
» parameters (dict) — The parameters at the end of the optimization process as a dictionary.

e result (scipy.optimize.OptimizeResult) — The result of the optimization pro-
cess.

Notes

There is no support for specifying a Met ric, the given output trace(s) will be subtracted from the sim-
ulated trace(s) and passed on to the minimization algorithm which will internally calculate the sum of

64 Chapter 3. API reference

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.least_squares.html#scipy.optimize.least_squares
https://docs.scipy.org/doc/scipy/reference/optimize.html
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.OptimizeResult.html#scipy.optimize.OptimizeResult

brian2modelfitting, Release 0.4+git

squares.

results (format="list’, use_units=None)
Returns all of the gathered results (parameters and errors). In one of the 3 formats: ‘dataframe’, ‘list’,
‘dict’.
Parameters

* format (str)— The desired output format. Currently supported: dataframe, 1ist,
ordict.

* use_units (bool, optional)— Whether to use units in the results. If not speci-
fied, defaults to Tracefitter.use_units, i.e. the value that was specified when the
Tracefitter object was created (True by default).

Returns ‘dataframe’: returns pandas Dat aF rame without units ‘list’: list of dictionaries ‘dict’:
dictionary of lists

Return type object

setup_neuron_group (n_neurons, namespace, calc_gradient=False, optimize=True, on-

_ line_error=False, name="neurons’) o
Setup neuron group, initialize required number of neurons, create namespace and initialize the parameters.

Parameters

* n_neurons (int)— number of required neurons

* x*namespace — arguments to be added to NeuronGroup namespace
Returns neurons — group of neurons
Return type NeuronGroup

setup_simulator (network_name, n_neurons, output_var, param_init, calc_gradient=False, opti-
mize=True, online_error=False, level=1)

brian2modelfitting.fitter.get_£full_namespace (additional_namespace, level=0)

brian2modelfitting.fitter.get_param_dic (params, param_names, n_traces, n_samples)
Transform parameters into a dictionary of appropriate size From list of dictionaries to dictionary of lists, with
variables repeated for each trace

brianZ2modelfitting.fitter.get_sensitivity equations (group, parameters, names-
pace=None, level=1, opti-
. . . mize=True)
Get equations for sensitivity variables.

Parameters
* group (NeuronGroup) — The group of neurons that will be simulated.
* parameters (1ist of str)—Names of the parameters that are fit.
* namespace (dict, optional)— The namespace to use.
* level (int, optional) — How much farther to go down in the stack to find the namespace.

* optimize (bool, optional) — Whether to remove sensitivity variables from the
equations that do not evolve if initialized to zero (e.g. dS_x_y/dt = -S_x_y/tau
would be removed). This avoids unnecessary computation but will fail in the rare case that
such a sensitivity variable needs to be initialized to a non-zero value. Defaults to True.

Returns sensitivity_eqs — The equations for the sensitivity variables.

Return type Equations

3.1. brian2modelfitting package 65

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#int
https://brian2.readthedocs.io/en/stable/reference/brian2.groups.neurongroup.NeuronGroup.html#brian2.groups.neurongroup.NeuronGroup
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

brian2modelfitting, Release 0.4+git

brian2modelfitting.fitter.get_sensitivity_init (group, parameters, param_init)
Calculate the initial values for the sensitivity parameters (necessary if initial values are functions of parameters).

Parameters

* group (NeuronGroup) — The group of neurons that will be simulated.

* parameters (1ist of str)—Names of the parameters that are fit.

e param_init (dict) - The dictionary with expressions to initialize the model variables.
Returns sensitivity_init — Dictionary of expressions to initialize the sensitivity parameters.
Return type dict

brian2modelfitting.fitter.get_spikes (monitor, n_samples, n_traces)
Get spikes from spike monitor change format from dict to a list, remove units.

brian2modelfitting.fitter.setup_£fit ()
Function sets up simulator in one of the two available modes: runtime or standalone. The Simulator that
will be used depends on the currently set Device. In the case of CPPStandaloneDevice, the device will
also be reset if it has already run a simulation.

Returns simulator

Return type Simulator

brian2modelfitting.inferencer module

class brian2modelfitting.inferencer.Inferencer (dt, model, input, output, features=None,
method=None, threshold=None,
reset=None, refractory=False,
param_init=None)
Bases: object

Class for a simulation-based inference.

It offers an interface similar to that of the F"i t t e r class but instead of fitting, a neural density estimator is trained
using a generative model which ultimately provides the posterior distribution over unknown free parameters.

To utilize simulation-based inference, this class uses a sbi library, for details see Tejero-Cantero 2020.
Parameters
e dt (brian2.units.fundamentalunits.Quantity)— Integration time step.

* model (str or brian2.equations.equations.Equations) — Single cell
model equations.

input (dict) — Input traces in the dictionary format where key corresponds to the name
of the input variable as defined in mode 1, and value corresponds to an array of input traces.

* output (dict) — Dictionary of recorded (or simulated) output data traces, where key
corresponds to the name of the output variable as defined in mode1, and value corresponds
to an array of recorded traces.

» features (dict, optional)- Dictionary of callables that take a 1-dimensional volt-
age trace or a spike train and output summary statistics. Keys correspond to output variable
names, while values are lists of callables. If features are set to None, automatic feature
extraction process will occur instead either by using the default multi-layer perceptron or by
using the custom embedding network.

* method (str, optional)- Integration method.

66 Chapter 3. API reference

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#object
https://brian2.readthedocs.io/en/stable/reference/brian2.units.fundamentalunits.Quantity.html#brian2.units.fundamentalunits.Quantity
https://docs.python.org/3/library/stdtypes.html#str
https://brian2.readthedocs.io/en/stable/reference/brian2.equations.equations.Equations.html#brian2.equations.equations.Equations
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

brian2modelfitting, Release 0.4+git

* threshold (str, optional)— The condition which produces spikes. It should be a
single line boolean expression.

* reset (str, optional)- The (possibly multi-line) string with the code to execute on
reset.

* refractory (bool or str, optional)-Eitherthe length of the refractory period
(e.g., 2*ms), a string expression that evaluates to the length of the refractory period after
each spike, e.g., ' (1 + rand())*ms', or a string expression evaluating to a boolean
value, given the cond